

Plant Archives

Journal home page: www.plantarchives.org

DOI Url: https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no1.008

SCREENING OF VEGETABLE POWDERS USED AS A BIO-INSECTICIDE AGAINST CALLOSOBRUCHUS MACULATUS F. (CHRYSOMELIDAE: BRUCHINAE)

Aimad Allali^{1*}, Sanae Rezouki¹, Bouchra Louasté³, Touati Najat¹, Noureddine Eloutassi² and Mohamed Fadli¹

¹Laboratory of Plant, Animal and Agro-industry Productions, Faculty of Sciences, University of IbnTofail (ITU), Kenitra Morocco ²Regional Center for the Trades of Education and Training (CRMEF), Fez-Morocco

³Laboratory of Biotechnology, Environment, Agri-food and Health, Faculty of Sciences Dhar El Mahraz (FSDM), Sidi Mohamed Ben Abdellah University (USMBA), Fez-Morocco

(Date of Receiving-12-09-2020; Date of Acceptance-01-12-2020)

The beetle *Callosobruchus maculatus* (F. 1775) (Chrysomelidae: Bruchinae) is a destructive pest of stored chickpea seeds. Bio-pesticides are pesticides of animal, plant and bacterial origin. Plant products are among the best known substances tested against insects. These products have an insecticidal and repellent effect on insects and can also affect certain biological parameters such as fecundity, life span and reproduction.

In search of plant bio-pesticides to control *Callosobruchus maculatus* main pest of stored chickpea seeds, 18 plants traditionally used in Morocco to control insect pests have been tested in the laboratory, for their toxic effects against this beetle. A conventional synthetic insecticide was included as a positive control, while untreated seed was used as a control. The toxicity of the powders was assessed by measuring the parameters of the life cycle in a situation of non-choice maintained at a climatic chamber with a temperature of 25 ± 1 degrees Celsius, a relative humidity of 75% and a photoperiod of 14h

ABSTRACT (light) / 10h (darkness) for several successive generations. The powders of *Mentha pulegium* and *Syzygium aromaticum* have completely wiped out the population of the bruches (% IR=100%) 2%, 1% and 0.5% p/p. Similarly, the powders of the two plants retained the weights of the seeds, which remain significantly different (P < 0.01) at the weight of the control. Also *Origanum compactum*, *Mentha officinalis*, *Allium sativum Zingiber officinale*, *Urtica doica and Calamintha officinalis* have significantly reduced (P < -0.01) the population of bruches, the percentage reduction reached (97.5, 89.32, 72.84, 50.3, 46.52 and 39.24% by the highest 2%). The other plants show no significant difference from the control.

The results therefore suggest that *Syzygium aromaticum* powder and *Mentha pulegium* have an insecticide potential similar to those of conventional insecticides and could be a biotechnological alternative against *C. maculatus* infestations and damage in stored products.

Keywords: Callosobruchus maculatus; plant; biological control; Morocco

INTRODUCTION

Insect pests are an important problem with stored seeds (Mendoza *et al.* 2004). They can cause significant losses by reducing the quality and quantity of stored products (Allali *et al.* 2020b). In order to control them without using synthetic pesticides, it is interesting to investigate other safer and more effective alternatives in plant protection. Actually, the plants can provide alternative insect control solutions because they are a very rich source of bioactive molecules (Lale 1992; Isman 1995; Qin *et al.* 2010).Many studies have highlighted the bio-insecticidal effects of plants on phytophagous pests (Bruchidae) (Boeke *et al.* 2004; Pourya *et al.* 2018; Neto *et al.* 2019; Allali *et al.* 2020c).

In order to preserve their nutritional value and make them fit for human consumption, chickpea seeds must be stored in a suitable place after harvest. However, during the storage period, chickpeas are often infested by insect pests, such as the main pest *Callosobruchus maculatus* (F.) (Coleoptera: Chrysomelidae: Bruchinae) (Sharma and Thakur2014; Boeke *et al.* 2004; Loganathan *et al.* 2011; Hamdi *et al.*, 2017). The neonate larvae entered into the seeds and produced important damage, such as loss of seed weight and reductions in germination power and nutritional value (Bamaiyi *et al.* 2006; Hamdi *et al.* 2017; Allali *et al.* 2020a).

Morocco is a biogeographical unit whose characteristics shape a completely original natural setting. Through its geographical contrasts, it offers a varied range of bioclimates allowing the installation of a rich flora with marked endemism (Fougrach *et al.* 2007; Khabbach *et al.* 2012). Alongside this particularly promising natural context, Morocco has an ancestral know-how that has been preserved over the centuries (Mehdioui and Kahouadji 2007). Farmers have been using plants for a long time, some parts of which, such as leaves, flowers, fruits, etc., have insect-repellent and/or insecticide potential.

Natural compounds of plant origin are biodegradable, often of low toxicity to mammals, and represent a low hazard to the environment if used in small quantities. Recent research has focused on alternatives to chemicals for pest control in developing countries. Various studies have demonstrated the efficacy of several plants as protective agents (Pannuti et al. 2012; Tamgno and Tinkeu 2014; Nenaah 2014; Diouf et al. 2016). Piper nigrum powder (Piperaceae) has caused a significant reduction in the bruchids population in cowpea stocks (Nwosu et al. 2018), and similar results were obtained with Neem powder (Azadirachta indica A. Juss)(Neto et al. 2019). Essential oils of Ocimum gratissimum L, and Ocimum basilicum L. have been successfully used against C. maculatus (Kéita et al. 2001). Some post-harvest storage methods may also be useful to reducing cowpea bruch infestations as part of an integrated pest management approach (Singano et al. 2019; Adesina et al. 2019). The objective of this study is to evaluate the effect of the application of several Moroccan and imported plants in powder form on the longevity, fecundity, emergence rate and duration of the larval phase of C. maculatus.

MATERIALS AND METHODS

Chickpea used: Chickpea (*Cicer arietinum*) seeds were cleaned and frozen at -18° C for 1 week and then dried in an oven at 60°C for 1 week to ensure the absence of viable insects without the use of chemicals (Sulehrie *et al.* 2003). Seeds were stored in airtight plastic jars at room temperature before use.

Mass rearing of insects: The species studied is *Callosobruchus maculatus*, it was obtained from a sample of chickpea from a stock in the city of Fez. It is maintained by mass rearing at laboratory level in 1.5 litre glass jars in the presence of chickpea seeds (*Cicer arietinum*). The jars are kept in a climatic chamber at a temperature of $25 \pm 1^{\circ}$ C, a relative humidity of $70 \pm 5\%$ and a photoperiod of 14h (light) / 10h (dark) for several successive generations.

Plant material: The choice of plants used for their bio-insecticidal effect was based on the results of a survey conducted in 2019 in two regions of Morocco, Fez-Méknès and Casablanca-Settat (Allali *et al.* 2020c). The identity of the plants used is presented in Table 1. Samples of Moroccan plants are collected from their natural ecosystem dried in the shade, for the imported plants; they were purchased from spice herbalists in Fez. The plant material was ground individually into powder using a clean mortar and pestle. The powders were sieved (mesh size: 1mm2) to produce fine powders (Nwosu *et al.* 2018). The choice of the «test concentration» was made with reference to the study by Lale (2002) who reported that the concentration of plant powder should not be higher than 2.0% w/w to be economically justified.

Biological Tests: All the tests were carried out under the same conditions. Untreated seeds were used as controls for each experiment and seeds treated with a commercial chemical insecticide were used as a positive control. For each test, 25.0g seeds and 0.50g plant powder (i.e. 2% w/w) were carefully shaken in a petri dish of 9 cm for two minutes. Five males and five females were released into each of the three repeat plates for each plant species (Boeke *et al.* 2004; Nwosu *et al.* 2018). Plants that showed a remarkable biocidal effect against the insect *C. maculatus* were selected and tested at several doses of 2%, 1%, 0.5% and 0.25%.

Daily observation was carried out for 9 days and mortality data on adult bruchids were collected and recorded every 24 hours. The percentage of mortality was calculated using the standard formula:

(Number of dead individuals x 100)/(Total number of individuals of *C.maculautus*)

The adult survival time in days was recorded and the total number of eggs was counted. Petri dishes were incubated under standard conditions to allow the eggs to develop into adults. Emerging F1 adults were counted, sexed according to the method ofRaina (1970) and removed from the seeds each day, and the seeds were weighed. Thus, information on the lifetime fecundity of females and the survival of the larval and pupal life of the beetle was collected. Two to five treatment sets (6 to 15 Petri dishes) were tested simultaneously with two sets of six dishes from the two controls.

The percentage reduction in adult emergence or inhibition rate (% IR) was determined by (Tapondjou *et al.* 2002) as follows: % IR = (Cn-Tn) 100/Cnor:

Cn is the number of newly emerged insects in the untreated (control) jar.

Tn is the number of insects newly emerged in the treatments

Statistical analysis: The statistical software SPSS for Windows[®] (version 21.0) was used. The data were subjected to an analysis of unidirectional variance (ANOVA) to determine the difference between the extreme values of the group. Fisher's Least Significant Difference (LSD) test was used to separate significant from non-significant means at $\alpha = 0.05$.

RESULTS AND DISCUSSION

Effect of plant material on the biological parameters of *C. maculatus*

The effect of plant material on mortality, female fertility and emergence rate of *C. maculatus* is presented in Table 2.

The percentage of mortality significantly varies (P < 0.01) depending on the treatment. All test materials caused varying degrees of insect mortality after 24 hours of exposure, reaching 100% mortality within 9 days in most tests. *Mentha pulegium* caused the highest mortality of bruchids at all periods of exposure, and this mortality was relatively different from that caused by the rest of the plant material. The chemical control effect (positive control) that caused the adult mortality was similar to that found with M. pulegium after 24 hours of treatment. Syzygium aromaticum showed a highly significant biocidal effect compared to the control. However, after 3

Scientificname of plants	Family	Local name	Plant type	Method of application
Capsicum frutescens L.	Solanaceae	soudania / al harra /	Cultivated	Integer part and / or powder
Urtica dioica L.	Urticaceae	Al hariga	spontaneous	Integer part
Origanum compactum Benth.	Lamiaceae	zaatar	spontaneous	Integer part
Allium sativum L	Liliaceae	touma	Cultivated	powder
Inula viscosa (Ait.) L.	Asteraceae	magramane / tirihla	spontaneous	Integer part
Zingiber officinalis	Zingiberaceae	azanjabile	Spontaneous/ Cultivated	powder
Olea europaea L.	Oléaceae	zitoun	Cultivated	Liquid/ Integer part
Rosmarinus officinalis L.	Lamiaceae	azir	spontaneous	Integer part
Pelargonium graveolens L'Hér.	Geraniaceae	laatrcha	Cultivated	Integer part
Syzygium aromaticum L.	Myrtaceae	quoronfl	spontaneous	Integer part
Calamintha officinalis L	Lamiaceae	manta	spontaneous	Integer part
Myrtus communis	Lamiaceae	Ariihan	spontaneous	Integer part
Mentha officinalis L.	Lamiaceae	Marseta	spontaneous	Integer part
Eucalyptus camaldulensis	Myrtaceae	calytous	Cultivated	Integer part
Artemisia herba Asso.	Asteraceae	chih	spontaneous	Integer part
Mentha pulegium L.	Lamiaceae	fliyou	spontaneous	Integer part
Daphne gnidium L.	Thymelaeaceae	alzaz	spontaneous	Integer part
Nerium oleander L.	Apocynaceae	defla	spontaneous	Integer part

days of exposure, S. aromaticum and M. pulegium showed the same treatment efficacy against adults. Powders of species of Eucalyptus camaldulensis, Inula viscosa, Origanum compactum, Capsicum frutescens, Calamintha officinalis, Pelargonium graveolens, Myrtus communis, Zingiber officinale, Daphne gnidium, Olea europaea, Nerium oleander and Rosmarinus officinalis showed a non-significant difference. However, the powder of Mentha officinalis, Urtica doica, Artemisia herba-alba and Allium sativum showed moderate toxicity causing total adult mortality after 6 days.

The number of eggs laid by adult females of C. maculatus was significantly different (P < 0.01) depending on the treatment. *S. aromaticum* showed a total effect on oviposition 0 eggs/5 females, similar to that of the positive control, followed by *M. pulegium* with a mean oviposition of 0.33±0.58 eggs/5 females, O. compactum with a mean of 5.66±8.1 eggs/5 females and M. officinalis with a mean of 24±11.79 eggs/5 females.The other plants showed no significant effect compared to the untreated control with the exception of *A. Sativum* which showed an effect on female fertility to a greater or lesser extent with 50.33±5.51 eggs/5 females.

As for the emergence rate, a total absence of emergence was observed in chickpea seeds treated with powders of *S. Aromaticum*, *M. pulegium* and the positive control, it was also significantly lower in seeds protected with powder of O. compactum, M. officinalis and A. sativum with a mean rate of 3 ± 5.97 , 12.33 ± 11.37 and 30.67 ± 11.68 respectively. The other powders did not show significant effects on the rate of emergence.

Dose optimization: By optimizing the doses of the plants that showed a very high biocidal effect at 2% (w/w), we were able to determine the optimal dose of

toxicity. The figures 1, 2, 3 and 4 shows that plant powders affect the longevity of adults in a very significant way. *M. pulegium* and *S. aromaticum* caused a mean total mortality of 100% at 1 day exposure for the 2%, 1% and 0.5% doses (Fig 2, 3), for A. sativum total mortality was recorded after 6 days of exposure and *O. compactum* after 9 days of exposure to a 2% powder dose (Fig 1, 4).

This mortality decreases with decreasing doses. While for all control batches (untreated batches); an average mortality of 93.33% were recorded after 9 days of exposure. Also the number of eggs laid by C. maculatus females is also significantly different (P < 0.01) depending on the treatment (Fig 5).The optimum dose that caused a total reduction in the number of eggs laid by *C. maculatus* in *S. aromaticum* and *M. pulegium* was 0.5% (w/w),followed by *O. compactum* which significantly reduced fecundity with an average of 5.67 eggs/5 females and finally A. sativum with an average fecundity of 50.33 eggs/5 females, where the optimum dose was 2%.Thus the oviposition registered in the control batches is on average 142 eggs/5 females.

As for the emergence rate (Fig 6), no individuals emerged in the chickpea lots protected with just 0.5% (w/w) powder of *S. aromaticum* and *M. pulegium*. The emergence is also significantly lower (3 ± 1 individuals) in chickpea seeds protected with 2% (w/w) O. compactum and (48.67 ± 17.16) in chickpea seeds protected with 2% (w/w) A. sativum. In the control lots, the mean of emerged individuals reached a value of 123 ± 7.55 individuals.

Means in a column followed by the same letter are not significantly different ($\alpha = 0.05$)

Mortality is significant at P < 0.01 according to LSD test.

Table 3 shows the effect of plant powders on the larval phase of *C. maculatus* and the reduction of seed

		Mortality (% Mean ±SD)	Mean ± SD)		Number of eggs (Mean	Emergence	Mean life cycle du-	% IR
	1 days	3 days	6 days	9 days	± SD)	(Mean ±SD)	ration (Days)	
Control*	$0\pm 0.0a$	3,33± 5.77 a	56,67± 11.55a	96,67±5.77a	132±12a	114±6.57a	29.33±1.15a	ı
Positive control**	100±0.0e	100±0.0k	100±0.0b	100±0.0 a	0±0.0 c	0±0.0c		100
E.camaldulensis	3,33±5.77 ab	16, 67±5.77 ab	60±10ac	100±0.0 a	83,33±3.51b	64±10.15b	38.33±2.31b	43.79
I.viscosa	23,33±15.27bc	30±10bc	93,33±5.77b	100±0.0 a	111.33±36.56ab	81.67±27.43ab	42.67±4.16bc	27.38
M. officinalis	43,33±15.27cd	56,67±5.77d	93,33±5.77b	100±0.0 a	24±11.79c	12.33±11.37c	46.67±4.62cd	89.32
0.compactum	10±17.32abc	26, 67±15.27bce	73,33±15.27c	100±0.0 a	5.66±8.1 c	3±5.97c	53±0.00e	97.5
M.pulegium	100±0.0e	100±0.0k	100±0.0b	100±0.0 a	0.33±0.58 c	$0\pm0.0c$		100
Cfrutescens	3,33±5.77 abc	16,67±5.77abce	100±0.0b	100±0.0 a	92,67±12.42 ab	77±12.17 b	42±1.73bdf	32.6
C.officinalis	3,33±5.77abc	30±10,0bce	73,33±5.77c	100±0.0 a	82.33±33.31b	68.67±26.76 b	43±3.61cdf	39.24
P.graveolens	0±0.0ab	73,33±5.77f	93,33±5.77b	100±0.0 a	96.61±20.21 ab	85±19.19 ab	37±0.0bh	25.85
M.communis	0±0.0ab	3,33±5.77ab	86, 67±5.77bc	100±0.0 a	93.67±30.53ab	83.67±32.01ab	40.67±2.52bcfgh	26.85
Z. officinale	3,33±5.77abc	23,33±5.77bce	66, 67±15.77ac	96,67±5.77a	104.33±20 ,84 ab	56±39.67 bd	45.67±4.51cdf	50.3
U.dioica	23,33±15.27bcd	56,67±5.77d	96, 67±5.77b	100±0.0 a	78,67±46 b	61±31.76 b	41±3bcghi	46.52
A.herba-alba	23,33±5.77bcd	40±17.32bdeg	100±0.0b	100±0.0 a	88.33±61.85 ab	79.33±23.03b	39.33±2.31bcfgh	30.37
D.gnidium	10±0.0abc	53,33±23.09dgh	100±0.0b	100±0.0 a	106,33±32.02ab	89±8.66ab	36.33±3.51bcg	22.03
0.europaea	0±0.0ab	26, 67±5.77bcegi	60±17.32ac	100±0.0 a	112.33±40.41 ab	96.67±7.57 ab	42.67±1.15bcdfh	14.94
N. oleander	3,33±5.77abc	30±10.0bcegi	56, 67±11.55b	100±0.0 a	103,33±6.69ab	77.33±22.14b	39.67±0.57bcfgh	31.79
R. officinalis	10±17.32abc	16, 67±11.55bcei	50±0.0a	100±0.0 a	117±26,46 ab	102±27.87 a	41±1.73bcfgh	11.09
A.sativum	46, 67±32.15d	66, 67±15.77dfh	100±0.0b	100±0.0 a	50,33±5.51bc	30.67±11.68bcd	36.67±1.15bgh	72.84
S.aromaticum	86, 67±23.09 e	$100\pm0.0k$	100±0.0b	100±0.0 a	0±0.0 c	$0{\pm}0.0c$	1	100

Table 2: Effect of plant powders [2% (w/w)] on the biological parameters of C. maculatus

*Untreated seed

**Seed treated with a conventional synthetic insecticide

% IR: percentage of population reduction Means in a column followed by the same letter are not significantly different and means followed by different letters are significant at P < 0.01 in the LSD test ($\alpha = 0.05$).

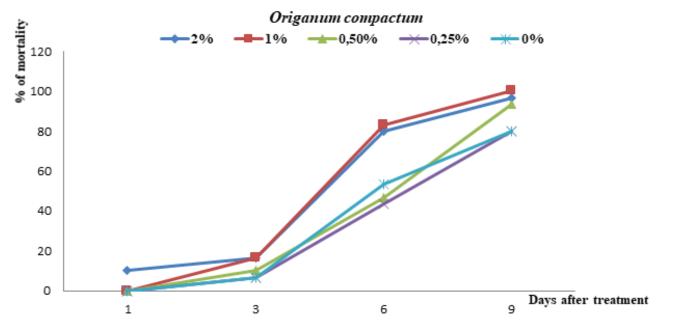


Fig 1: Mortality rate of adults of C. Maculatus in the presence of chickpea seeds treated with different concentrations of powders of O. compactum

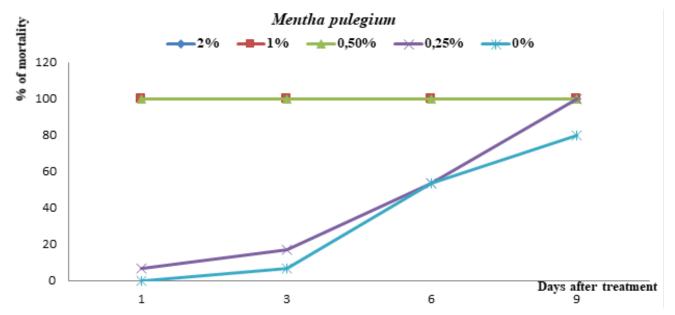


Fig 2: Mortality rate of adults of C. maculatus in the presence of chickpea seeds treated with different concentrations of M. pulegium powders

weights after treatment. The results of the experiments showed that there is no significant difference between control lots and lots treated with powders of S. aromaticum, M. pulegium and A. sativum concerning the larval stage. On the other hand, tests treated with O. compactum significantly (p=0.005) increased the duration of the larval phase.

Measurement of seed weights showed that treatment with powders of the two species S. aromaticum and M. pulegium protected chickpea seeds and significantly reduced damage by weight for all doses (P=0.0018). The same results were obtained when treated with a 2% dose of O. compactum. For A. sativum powders the differences in the means of all the doses were not significant in comparison with the results obtained in the control batches.

in plants is the presence of toxic activity against insects, these insecticidal potentialities can be a real solution for the control of pests in storage systems to replace or even minimize the application of chemical pesticides.In the present study, the plant species tested when applied as contact powders showed adulticidal, ovicidal and larvicidal activity against C. maculatus. The toxicity of the powders varies according to the species tested, the dose used and the time of exposure; this toxicity is much greater at high doses. M. pulegium and S. aromaticum showed the highest insecticidal activity against C. maculatus at an optimal dose of 0.5% (w/w). Their toxic effect on the insect did not differ significantly from that of the positive control throughout the exposure period.A total reduction in fecundity and emergence confirms that both plants have good bio-insecticidal potential to control

Discussion: One of the most important values

beetle infestations. These results are in agreement with

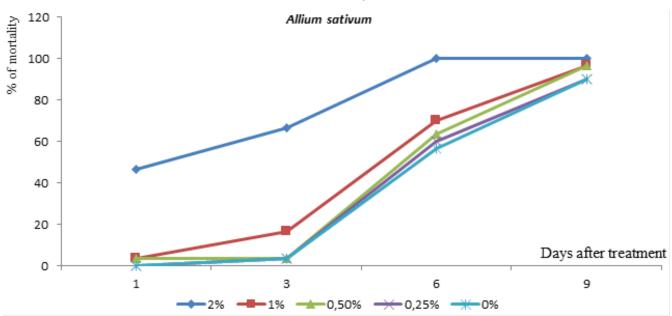


Fig 3: Mortality rate of adults of *C. maculatus* in the presence of chickpea seeds treated with different concentrations of *S. aromaticum* powders

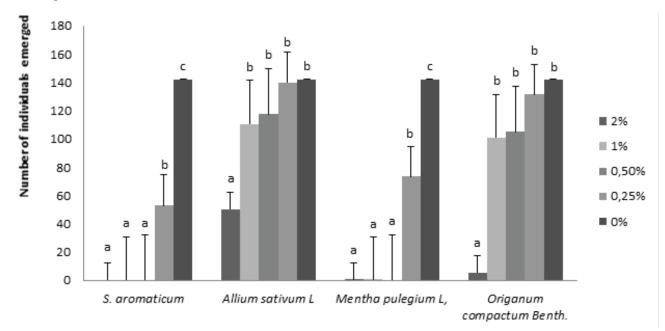


Fig 4: Mortality rate of adults of *C. maculatus* in the presence of chickpea seeds treated with different concentrations of *A. sativum* powders

those obtained by Kumar *et al.* (2011) who evaluated the effect of species of the genus mentha and Lawal *et al.* (2014) who worked on Syzygium. These two studies showed insecticidal activity mainly due to pulegone and menthone, major components of the essential oil of *M. pulegium* (Domingues and Santos 2019) and eugenol, major component of the essential oil of *S. aromaticum* (Fayemiwo *et al.* 2014) which are highly insecticidal against various crop pests. These terpene compounds play a repellent role at low concentrations and a lethal role at high concentrations (Picimbon 2002).

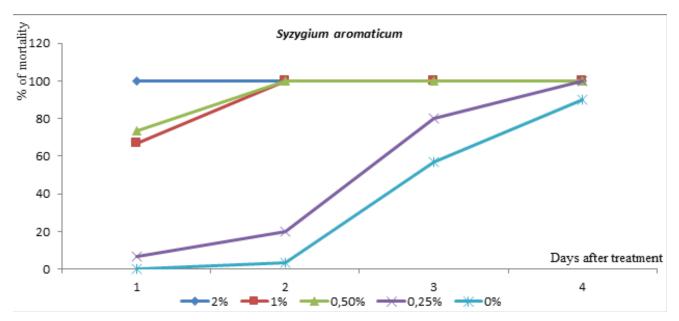
Traditionally, plant powders have been mixed with seeds stored in Morocco since ancient times and could be used as a natural, safe and less expensive strategy to protect stored seeds from insect infestation(Allali *et al.* 2020c). The strategy used varies from one region to another and seems to depend in part on the type and effectiveness of the flora available in the different regions (Levinson and Levinson 1998; Golob 1999; Nenaah and Ibrahim 2011).

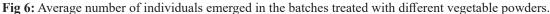
In a related study, Johnson *et al.*(2006) reported that powder from the dry leaves of M. piperita (species of the same genus) at 0.4% (w/w) significantly reduced the fecundity of *C. maculatus* by more than 60% and the rate of emergence by more than 80%. In the same sense, the work of (Kumar *et al.* 2011)on the genus of Mentha reports that the insecticidal properties of the different species of Mentha are generally related to its essential oils or plant extracts, which is correlated to their chemical composition.These results are more marked compared to those obtained by other authors who have worked on *C. maculatus* or other insects.Tripathi *et al.* (2009) reported that S. aromaticum powder caused 100% adult repulsion Screening of vegetable powders used as a bio-insecticide against Callosobruchus maculatus F. (chrysomelidae: bruchinae)

Dose	S.aromaticum	M .pulegium	O. compactum	A.sativum
Duration of th	he larval phase in days			•
2%	-	-	55±1.15 e	34.33±0.57a
1%	-	-	43.67±3.66d	35±2.65a
0.5%	-	-	38.67±1.5bc	36.33±2.05a
0.25%	29±2a	28.67±1.53 a	35±0.57bc	34±2a
0%	29.33±1.15a	29.33±1.15 a	29.33±1.15 a	29.33±2.15a
	Seedweightloss in %.			
2%	0±0.0a	0±0.0 a	0,04±0.06 a	1.33±0.31 a
1%	0±0.0 a	0±0.0 a	1,4±0.25 ab	1.97±0.21 a
0.5%	0,03±0.06 a	0±0.0 a	2,67±0.12bc	2.47±0.75 a
0.25%	0,11±0.1 a	0,76±0.13 a	2,84±0.15bc	2.62±0.29 a
0%	3 26+0 64 b	3 26+0 64 h	3 26+0 64 c	3 26+0 64 a

Table 3: Effect of plant powder on larval phase and seed weight

Column means followed by the same letters are not significantly different and means followed by different letters are significant at P < 0.01 on the LSD test ($\alpha = 0.05$).




Fig 5: Number of eggs laid/5 female C. maculatus released on chickpea seeds treated with different rates of plant powders

of T. castaneum at a dose of 1.5 g / 50 g or 3% w/w. Also AL and Albandari (2015) reported that S. aromaticum oil caused 63.333% mortality two days after exposure to the highest concentration (5mg/L), rising to 96.667% four days after treatment at the same concentration.

O. compactum, M. officinalis and A. sativum, are ranked second with significant biocidal activity achieving a percentage reduction of 97.5%, 89.32% and 72.84% respectively by a 2% w/w dose (Table 2). Our results are consistent with many other studies. Ahmad *et al.* (2019) reported that A. sativum is an effective control against T. castaneum insect pests of stored products, Khalfi *et al.* (2008) reported that O. compactum showed insecticidal activity against Rhizoperthadominica and that this activity increases with increasing dose. Benelli *et al.* (2019) added that the toxicity of Origanumsyriacum tested against several insect pests is mainly due to its majority compound carvacrol which is the same majority compound in O. compactum.

Z. officinale, E. camaldulensis and U. dioica significantly reduced ($p \le 0.001$) the population of C. maculatus with 50.3%, 46.52% and 43.79% respectively by 2% w/w dose (Table 2). These results are similar to those obtained by Al Qahtani et al. (2012) who reported that Zingiber officinale caused 63.2% mortality of Oryza ephilussurinamensis at the same 2% w/w dose. In addition to secondary metabolites, plants possess other direct defense responses against attack by phytophagous insects such as production of insecticidal peptides or proteins.A particular class of entomotoxic proteins found in many plant species is the carbohydrate-binding lectin protein group. A type of lectin called UDA (Urtica dioïca agglutinin) is found in Urtica doica causing varying degrees of mortality against C. maculatus (Murdock et al. 1990; Vandenborre et al. 2011). For eucalyptus, Prates et al. (1998) showed that E. camaldulensis showed biocidal activity against Rhyzopertha dominica and Tribolium castaneum, which are important pests of stored seeds, and this could be due to two major compounds present in their essential oils.

The other plants tested caused a small and non-significant percentage reduction of *C. maculatus* compared to the untreated control (Table 2).

The vegetal materials' mechanisms of action are contact and fumigation (Adedire and Lajide 1999; Asawalam and Emosairue 2006; Asawalam *et al.* 2006; Franccedil *et al.* 2009; Ukeh *et al.* 2010). The plant powders effectively protect the seeds against bruch infestation and therefore do not present any risk to human health and the environment, unlike conventional insecticides.

CONCLUSION

The plant species tested showed considerable toxicity against C. maculatus from stored chickpeas, when applied as a powder. Farmers were able to introduce these herbs into storage systems that release toxic volatile compounds into the storage space. Given the welldocumented difficulties associated with the design of synthetic chemicals, in addition to the hazardous effects, the costs associated with the use of synthetic insecticides, and the pest resistance problems of these chemicals, these traditional control methods may play a wiser role in the future of IPM programs. Although test plants are used in folk medicine and also in many pharmaceutical preparations and are probably relatively safe, experiments should be conducted to assess their phytotoxicity on crops. Studies should be expanded to evaluate their mammalian safety, insecticidal mode of action and formulations for use in seed stores.

List of abbreviations

W/w :Weight/weight

- % IR :The percentage reduction in adult emergence
- ANOVA: analysis of variance
- LSD: Fisher's Least Significant Difference

UDA: Urticadioïca agglutinin

IPM: integrated pest management programs

ACKNOWLEGEMENTS

This work has not been funded. Special thanks to all those who contributed to this work: Laboratory of Materials and Environment Engineering, Faculty of Sciences Dhar El Mehraz, USMBA, Fez (Morocco).

REFERENCES

- Adedire CO, Lajide L (1999) Toxicity and oviposition deterrency of some plant extracts on cowpea storage bruchid, Callosobruchus maculatus Fabricius. *Journal of Plant Diseases and Protection* 106:647–653. https://doi. org/DOI: 10.2307/43390125
- Adesina JM, Raghavendra A, Rajashekar Y, Ofuya TI (2019) Potential use of Clerodendrum capitatum extracts and its formulation for control of three major stored product beetles. *Food Qual Saf* 3:179–185. https://doi.org/10.1093/ fqsafe/fyz018
- Ahmad F, Iqbal N, Zaka SM, Qureshi M, Saeed Q, Khan Kh,Ansari M, Awar MB (2019) Comparative insecticidal activity of different plant materials from six common plant species against Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae). Saudi Journal of Biological Sciences 26:1804–1808. https://doi.org/10.1016/j.sjbs.2018.02.018
- Allali A, Rezouki S, Bouchelta Y, Louasté B, Nechad I, Eloutassi N, Fadli M (2020a) Effect of host seed species and seed coat on the biological parameters of Callosobruchus maculatus. *International Journal of Entomology Research* 5:40–43
- Allali A, Rezouki S, Louasté B,Bouchelta Y, Kamli T, Eloutassi N, Fadli M (2020b) Study of the nutritional quality and germination capacity of cicer arietinum infested by callosobruchus maculatus (Fab.). 1 44–56

- Allali A, Rezouki S, Louasté B,Nechad I, Eloutassi N, Fadli M (2020c) Investigation of vegetal bio-insecticides for the stored seeds. *International Journal of Botany Studies* 5:219–224
- Al Qahtani AM, Al-Dhafar ZM, Rady MH (2012) Insecticidal and biochemical effect of some dried plants against Oryzaephilus surinamensis (Coleoptera-Silvanidae). *The Journal of Basic & Applied Zoology* 65:88–93. https://doi. org/10.1016/j.jobaz.2012.10.008
- AL Y, Albandari F (2015) Evaluation the efficiency of clove oil (Syzygium aromaticum) in controlling cowpea seed beetle, Callosobruchus maculatus (F.) (Coleoptera: Bruchidae). Egyptian Academic Journal of Biological Sciences A, Entomology 8:33–40. https://doi.org/10.21608/ eajbsa.2015.12920
- Asawalam E, Emosairue S, Ekeleme F, Wokocha R (2006) Insecticidal effects of powdered parts of Eight Nigerian plant species against maize weevil Sitophilus zeamais motschulsk (Coleaoptera: Curculionidae). *Nigeria Agricultural Journal* 37:106–116
- Asawalam EF, Emosairue S (2006) Comparative efficacy of Piper guineense (Schum and Thonn) and pirimiphos methyl on Sitophilus zeamais (Motsch.). *Tropical and Subtropical Agroecosystems* 6:143–148
- Bamaiyi LJ, Onu I, Amatobi CI, Dike MC (2006) Effect of Callosobruchus maculatus infestation on nutritional loss on stored cowpea grains. Archives of Phytopathology and Plant Protection 39:119–127. https://doi. org/10.1080/03235400500180743
- Benelli G, Pavela R, Petrelli R, Cappellacci F, Canale A, Maggi F (2019) Origanum syriacum subsp. syriacum: From an ingredient of Lebanese 'manoushe' to a source of effective and eco-friendly botanical insecticides. *Industrial Crops and Products* 134:26–32. https://doi.org/10.1016/j. indcrop.2019.03.055
- Boeke SJ, Baumgart IR, van Loon JJA, Van Huis A, Dicke M, Kossou DK (2004) Toxicity and repellence of African plants traditionally used for the protection of stored cowpea against Callosobruchus maculatus. *Journal of Stored Products Research* 40:423–438. https://doi.org/10.1016/ S0022-474X(03)00046-8
- Diouf EHG, Diop M, Sène A, Samb A, Gueya S (2016) Comparison of the Insecticidal Activities of Three Plants against Two Devastating Insects: Callosobruchus maculatus and Sitophilus zeamais. Open Access Library Journal 3:1–13. https://doi.org/10.4236/oalib.1102966
- Domingues PM, Santos L (2019) Essential oil of pennyroyal (Mentha pulegium): Composition and applications as alternatives to pesticides—New tendencies. *Industrial crops and products* 139:111534. https://doi.org/doi. org/10.1016/j.indcrop.2019.111534

Fayemiwo KA, Adeleke MA, Okoro OP, Awojide SH, Awoniyi

IO (2014) Larvicidal efficacies and chemical composition of essential oils of Pinus sylvestris and Syzygium aromaticum against mosquitoes. *Asian Pacific Journal of Tropical Biomedicine* 4:30–34. https://doi.org/10.1016/ S2221-1691(14)60204-5

- Fougrach H, Badri W, Malki M (2007) Flore vasculaire rare et menacée du massif de Tazekka (région de Taza, Maroc).
 Bulletin de l'Institut Scientifique, Rabat, Section Science de la Vie 29:10
- Franccedil T, ois, Michel JDP, Lambert SM, Ndifor F, Vyry WN, Henri AZ, Chantal M (2009) Comparative essential oils composition and insecticidal effect of different tissues of Piper capense L., Piper guineense Schum. et Thonn., Piper nigrum L. and Piper umbellatum L. grown in Cameroon. *AJB* 8:424–431. https://doi.org/10.5897/AJB2009.000-9073
- Golob P (1999) The Use of Spices and Medicinals as Bioactive Protectants for Grains. *Food & Agriculture Org.*, Rome, Italy
- Hamdi SH, AbidiS, Dorra S, Amri M, Boushihi E, Hedjil CM, Larbi KM Mediouna J (2017) Nutritional alterations and damages to stored chickpea in relation with the pest status of Callosobruchus maculatus (Chrysomelidae). *Journal of Asia-Pacific Entomology* 20:1067–1076. https://doi. org/10.1016/j.aspen.2017.08.008
- Isman M (1995) Leads and prospects for the development of new botanical insecticides. *Reviews in pesticide toxicology* 3:1–20
- Johnson F, Seri-Kouassi B, Aboua LR, Foua-Bi K (2006) Utilisation de poudres et d\'extraits totaux issus de plantes locales des genres Ocimum sp. et Mentha sp. comme biopesticides dans la lutte contre Callosobruchus maculatus FAB. *Agronomie Africaine* 18:221–233. https:// doi.org/10.4314/aga.v18i3.1694
- Khabbach A, Libiad M, Ennabili A (2012) Production et commercialisation des ressources végétales dans la province de Taza (Nord du Maroc). Revue AFN Maroc 6:21
- Khalfi O, Sahraoui N, Bentahar F, Boutekedjiret C (2008) Chemical composition and insecticidal properties of Origanum glandulosum (Desf.) essential oil from Algeria. *Journal of the Science of Food and Agriculture* 88:1562– 1566. https://doi.org/10.1002/jsfa.3251
- Kumar P, Mishra S, Malik A, Satya S (2011) Insecticidal properties of Mentha species: a review. Industrial Crops and Products 34:802–817. https://doi.org/10.1016/j. indcrop.2011.02.019
- Kéita SM, Vincent C, Schmit J-P,Arnason JT, Belanger A (2001) Efficacy of essential oil of Ocimum basilicum L. and O. gratissimum L. applied as an insecticidal fumigant and powder to control Callosobruchus maculatus (Fab.) [Coleoptera: Bruchidae]. Journal of Stored Products

Research 37:339–349. https://doi.org/10.1016/S0022-474X(00)00034-5

- Lale N (2002) Stored product entomology and acarology in tropical Africa Mole Publications. Mole Publications (Nig) Maiduguri 204:
- Lale NES (Port HU (Nigeria) D of Z (1992) A laboratory study of the comparative toxicity of products from three spices to the maize weevil. Postharvest Biology and Technology (Netherlands) 2:61–64
- Lawal OA, Ogunwande IA, Bullem CA, Taiwo O (2014) Essential Oil Compositions and In Vitro Biological Activities of Three Szyzgium Species from Nigeria. In: In book: New developments in terpenes research. Nova Science Publishers, Inc., pp 103–296
- Levinson H, Levinson A (1998) Control of stored food pests in the ancient Orient and classical antiquity. *Journal* of Applied Entomology 122:137–144. https://doi. org/10.1111/j.1439-0418.1998.tb01475.x
- Loganathan M, Jayas DS, Fields PG, White NDG (2011) Low and high temperatures for the control of cowpea beetle, callosobruchus maculatus (F.) (coleoptera: Bruchidae) in chickpeas. *Journal of Stored Products Research* 47:244– 248. https://doi.org/10.1016/j.jspr.2011.03.005
- Mehdioui R, Kahouadji A (2007) Etude ethnobotanique auprès de la population riveraine de la forêt d'Amsittène : cas de la Commune d'Imi n'Tlit (Province d'Essaouira). Bulletin de l'Institut Scientifique,Rabat, Section Science de la Vie 29:20
- Murdock LL, Huesing JE, Nielsen SS, Pratt RC, Shade RE (1990) Biological effects of plant lectins on the cowpea weevil. *Phytochemistry* 29:85–89. https://doi.org/10.1016/0031-9422(90)89016-3
- Nenaah GE (2014) Bioactivity of powders and essential oils of three Asteraceae plants as post-harvest grain protectants against three major coleopteran pests. *Journal of Asia-Pacific Entomology* 17:701–709. https://doi.org/10.1016/j. aspen.2014.07.003
- Nenaah GE, Ibrahim SIA (2011) Chemical composition and the insecticidal activity of certain plants applied as powders and essential oils against two stored-products coleopteran beetles. *J Pest Sci* 84:393. https://doi.org/10.1007/s10340-011-0354-5
- Neto EP de S, Andrade ABA de, Costa EM, Maracajia PB, Santos AB, Santos JLG, Pimenta TA (2019) Effect of Neem Powder (Azadirachta indica A. Juss) on the Control of Cowpea Weevils [Callosobruchus maculatus (F.) (Coleoptera: Bruchidae)] in Cowpea Beans. *Journal of Experimental Agriculture International* 30:1–7. https:// doi.org/10.9734/JEAI/2019/46051
- Nwosu LC, Ugagu GM, Eluwa AN, Obi OA, Adanyi DD, Okereke VA, Nzewuihi GU, Lawal IA, Uwalaka OA (2018) Insecticidal Activities of Five Medicinal Plant Materials

against Callosobruchus Maculatus Fabricius (Coleoptera: Chrysomelidae) Infesting Cowpea Seeds in Storage. *The International Journal of Biotechnology* 7:64–69. https:// doi.org/10.18488/journal.57.2018.71.64.69

- Pannuti LER, Marchi LS, Baldin ELL (2012) Use of vegetable powders as alternative to control of. BolSanVegPlagas 38:40
- Perez-Mendoza J, Flinn PW, Campbell JF, Hagstrum DW, Throne JE (2004) Detection of Stored-Grain Insect Infestation in Wheat Transported in Railroad Hopper-Cars. *J Econ Entomol* 97:1474–1483. https://doi.org/10.1093/ jee/97.4.1474
- Picimbon J (2002) Protéines liant les odeurs (OBP) et protéines chimiosensorielles (CSP): cibles moléculaires de la lutte intégrée. Biopesticides d'origine végétale Paris: Lavoisier Tec et Doc 265–83
- Pourya M, Sadeghi A, Ghobari H, Taning CNT, Smagghe G (2018) Bioactivity of Pistacia atlantica desf. Subsp. Kurdica (Zohary) Rech. F. and Pistacia khinjuk stocks essential oils against Callosobruchus maculatus (F, 1775) (Coloeptera: Bruchidae) under laboratory conditions. Journal of Stored Products Research 77:96–105. https:// doi.org/10.1016/j.jspr.2018.03.007
- Prates H, Santos J, Waquil J, Fabris JD, Oliveira AB, Foster JE (1998) Insecticidal activity of monoterpenes against Rhyzopertha dominica (F.) and Tribolium castaneum (Herbst). Journal of Stored Products Research 34:243–249
- Qin W, Huang S, Li C, Chen S, Peng Z (2010) Biological activity of the essential oil from the leaves of Piper sarmentosum Roxb. (Piperaceae) and its chemical constituents on Brontispa longissima (Gestro) (Coleoptera: Hispidae). *Pesticide Biochemistry and Physiology* 96:132–139. https://doi.org/10.1016/j.pestbp.2009.10.006
- Raina AK (1970) Callosobruchus spp. infesting stored pulses (grain legumes) in India and comparative study of their biology. *Indian Journal of Entomology* 32:303–310
- Sharma S and Thakur DR (2014)Studies on the Varietal Preference of Callosobruchus maculatus on Soybean Genotypes. Science Alert. Asian Journal of Biological Sciences7 : 233-237 .https://doi.org/10.3923/ajbs.2014.233.237
- Singano CD, Mvumi BM, Stathers TE (2019) Effectiveness of grain storage facilities and protectants in controlling stored-maize insect pests in a climate-risk prone area of Shire Valley, Southern Malawi. Journal of Stored Products Research 83:130–147. https://doi.org/10.1016/j. jspr.2019.06.007
- Sulehrie M a. Q, Golob P, Tran BMD, Farrell G (2003) The effect of attributes of Vigna spp. on the bionomics of Callosobruchus maculatus. *Entomologia Experimentalis et Applicata* 106:159–168. https://doi.org/10.1046/j.1570-7458.2003.00019.x
- Tamgno BR, Tinkeu SLN (2014) Utilisation des produits dérivés

du neem Azadirachta indica A. Juss comme alternatifs aux insecticides synthétiques pour la protection des semences de maïs et de sorgho dans la Vallée du Logone. *Sciences, Technologies et Développement* 15:8

- Tapondjou LA, Bouda H, Adler C, Fontem DA (2002) Efficacy of powder and essential oil from Chenopodium ambrosioides leaves as post-harvest grain protectants against six-stored product beetles. *Journal of Stored Products Research* 38:395–402. https://doi.org/10.1016/ S0022-474X(01)00044-3
- Tripathi AK, Singh AK, Upadhyay S (2009) Contact and fumigant toxicity of some common spices against the storage insects Callosobruchus maculatus (Coleoptera:

Bruchidae) and Tribolium castaneum (Coleoptera: Tenebrionidae). *Int J Trop Insect Sci* 29:151–157. https:// doi.org/10.1017/S174275840999018X

- Ukeh DA, Birkett MA, Bruce TJ, Allan EJ, Pickett JA, Mordue AJ (2010) Behavioural responses of the maize weevil, Sitophilus zeamais, to host (stored-grain) and non-host plant volatiles. *Pest Management Science* 66:44–50. https://doi.org/10.1002/ps.1828
- Vandenborre G, Smagghe G, Van Damme EJM (2011) Plant lectins as defense proteins against phytophagous insects. Phytochemistry 72:1538–1550. https://doi.org/10.1016/j. phytochem.2011.02.024