

Plant Archives

Journal home page: www.plantarchives.org

DOI Url: https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no1.089

RESPONSE OF PLANT GROWTH REGULATORS ON THE GROWTH, FLOWERING AND YIELD ATTRIBUTES OF AFRICAN MARIGOLD (TAGETES ERECTA. L)

Kousika. S¹ , Ajish Muraleedharan¹*, K. Sha¹, P.K. karthikeyan², C. Praveen Sampath Kumar³, J.L. Joshi³ and A.J. Nainu³

¹Department of Horticulture, Faculty of Agriculture, Annamalai University, Annamalainagar, Tamil Nadu, - 608002 India ¹Department of Soil Science and Agricultural Chemistry Faculty of Agriculture, Annamalai University, Annamalainagar, Tamil Nadu- 608002 India ³Department of Genetics and Plant Breeding, Faculty of Agriculture, Annamalai University, Annamalainagar, Tamil Nadu, 608002 - India *Corresponding author: Ajish Muraleedharan

(Date of Receiving-11-11-2020; Date of Acceptance-12-02-2021)

ABSTRACTTagetes is a genus of annual, perennial or herbaceous plant in the family Asteraceae. Most of the species have pinnate green
leaves. Blooms are naturally occurring in golden, orangeyellow, and white colour, often with maroon highlights. Floral heads
are 4 to 6 cm in diameter, generally with both ray florets and disc florets. The present study was conducted at the post graduate
research laboratory at Department of Horticulture, Faculty of Agriculture, Annamalai University to find out the "Effect of plant
growth regulators on flowering and yield of African marigold (*Tagetes erecta* Linn)". The experiment was laid out in Random-
ized Block Design with three replications. There were ten treatments, viz., GA3 100 ppm, GA3 200 ppm and GA3 300 ppm,
NAA 100 ppm, NAA 200 ppm, NAA 300 ppm, Ethrel 50 ppm, Ethrel 100 ppm, and Ethrel 150 ppm and control. Among the
growth regulators tried, GA3 200 ppm as foliar application on 30 and 60 days after transplanting registered the highest values
for plant characters like plant height (47.1 cm), number of branches (35.1), days taken to first flower bud appearance (39.3
days), days taken to flower opening (37.6 days), longevity of flower (11.17 days), stalk length (12.1 cm), diameter of flower
(7.8 cm), number of flowers per plant (40.3), weight of the single flower (9.1 g), yield of flowers per plant (337 g) and flower
yield per plot (11.1 kg). From the present study, it is recommended that spraying of GA3 200 ppm on 30 and 60 days after
transplanting improved yield and quality of African marigold flowers.

Keywords: African marigold, GA3, NAA, Ethrel.

INTRODUCTION

African marigold (Tagetes erecta Linn.) is one of the commercially exploited ornamental crops, grown for loose flower, for pigment Xanthophyll, aromatic oil and poultry feed. It occupies special status due to its hardiness, easy culture, wider adaptability to different soil and climatic conditions of flower growers. Flowers are in golden, orange, yellow, and white color, often with maroon highlights. Floral heads are 4 to 6 cm in diameter, generally with both ray florets and disc florets. It is suitable for potted plant, bedding, edging, garland making and religious offering. Apart from its significance in ornamental horticulture, it has been valued for aromatic oil called as "Tagetes oil" which is used for preparation of higher-grade perfume and also as an insect repellent. Recently, dried flower petals of marigold are used as poultry feed in order to improve the colour of egg yolk as well as broilers skins. So, it is gaining industrial importance due to its huge potential in value addition, to fulfil the demand of farmers and industrialist, it is necessary to increase its production through improved production technologies.

Plant growth regulators have gained wide acceptance for optimizing the yield of plants by modifying growth, development and stress behaviour (Atam Prakash *et al.*, 2001). Not all plant cells respond to hormones, but those cells that are programmed to respond at specific points in their growth cycle. Plants need these hormones at very specific times during plant growth and at specific locations. Synthetic plant growth regulators, such as auxins, cytokinins and various growth retardants when applied exogenously to the plant, influence various aspects of the plant development and bio synthesis of important components like growth and flowering (Atam Prakash *et al.*, 2001). Plant growth regulators are found beneficial in enhancing the plant growth and flower production in marigold (Girwani *et al.*, 1990). Hence, the present investigation was conducted to evaluate the effect of growth regulators on growth, flowering and yield of African marigold plants.

MATERIALS AND METHODS

The present study was conducted at the post graduate research laboratory at Department of Horticulture, Faculty of Agriculture, Annamalai University. There was ten treatment imposed in Randomized Block Design which is replicated thrice. The nine treatments were T1: GA₃ 100 ppm; T2: GA₃ 200 ppm; T3: GA₃ 300 ppm; T4: NAA 100 ppm; T5: NAA 200 ppm; T6: NAA 300 ppm; T7: Ethrel 100 ppm; T8: Ethrel 200 ppm; T9: Ethrel300 ppm; T1: GA₃ 100 ppm. The marigold hybrid used for the study was Supreme Yellow. These plants have wider adaptability and flowers are compact and bright yellow in colour. The

SI. No.	Treatments	Plant height (cm)	Number of branches	Days taken for flower bud ap- pearance (days)	Days taken for first flower open- ing (days)	Length of flow- er stalk (cm)
T ₁	GA ₃ 100 ppm	43.5	28.7	42.6	43.6	9.8
T ₂	GA ₃ 200 ppm	47.1	35.1	36.6	37.6	12.1
T ₃	GA ₃ 300 ppm	41.5	30.2	39.3	41.3	8.8
T ₄	NAA 100 ppm	38.5	27.5	39.0	42.6	8.5
T ₅	NAA 200 ppm	44.3	32.3	38.3	41.0	11.0
T ₆	NAA 300 ppm	38.3	28.3	41.3	44.0	7.7
T ₇	Ethrel 50 ppm	34.7	26.7	43.0	46.0	8.6
T ₈	Ethrel 100 ppm	32.4	24.4	43.0	46.0	9.1
T ₉	Ethrel 150 ppm	31.7	23.7	39.6	44.0	8.1
T ₁₀	Control	36.6	23.6	46.6	49.5	7.1
S. Ed		0.49	0.32	0.32	0.25	0.36
CD (P= 0.05)		0.94	0.64	0.64	0.54	0.76

Table 1. Effect of PGR on growth and flowering attributes of African marigold

Sl. No.	Treatments	Flower lon- gevity (days)	Fresh Weight of flower (g)	Diameter of flower (cm)	Number of flowers per plant	Flower yield per plant (g)	Flower yield per plot (kg)
T ₁	GA ₃ 100 ppm	9.92	8.4	6.5	37.0	264.0	9.1
T ₂	GA ₃ 200 ppm	11.17	9.1	7.8	40.3	337.0	11.1
T ₃	GA ₃ 300 ppm	8.35	7.0	6.2	34.0	241.6	8.4
T ₄	NAA 100 ppm	7.88	6.6	5.9	33.6	212.2	7.8
T ₅	NAA 200 ppm	10.59	8.8	6.6	38.2	329.6	10.6
T ₆	NAA 300 ppm	8.65	6.8	6.0	33.3	224.5	8.0
T ₇	Ethrel 50 ppm	6.03	6.2	5.2	28.3	196.4	7.2
T ₈	Ethrel 100 ppm	7.07	6.8	6.0	29.6	224.0	8.1
T ₉	Ethrel 150 ppm	8.12	7.0	6.2	31.6	241.0	8.4
T ₁₀	Control	5.03	5.4	4.8	25.0	160.3	6.4
S. Ed		0.45	0.26	0.24	1.35	2.27	0.26
CD (P= 0.05)		0.91	0.55	0.52	2.84	4.77	0.56

 Table 2. Effect of PGR on the yield attributes of African marigold

soil was brought to fine tilth by incorporating FYM and recommended dose of fertilizers. Ridges and furrows were prepared at a spacing of 60 x 45 cm. Seedlings of 22 days old plants grown in nursery were transplanted to the main field. Plant Growth regulators were sprayed twice by using knapsack sprayer at 30th and 60 th days after transplanting to the main field. Observations were taken from five randomly selected plants from each replication from all the treatments at 15 days interval from the date of transplanting. Yield parameters were recorded once in a week at the time of harvesting.

RESULTS AND DISCUSSION

Plant height was significantly increased by successive increase in concentration of GA_3 . The result reveals that the higher concentration of GA_3 is most effective in multiplication of cells as well as elongation of young tissues whereas the lower concentration was less desirable. The promotive effect of gibbrellins on growth may be by increasing the auxin level of tissue or enhancing

the conversion of tryptophan to IAA, which cause cell division and cell elongation (Kuraishi and Muir, 1964). The number of main branches per plant increased with successive increase in GA₃ concentration. The maximum number of branches per plant was observed with treatment treated with 200 ppm GA₃. Hyper elongation of inter nodal length caused extension in plant height while increase in nodal count on main axis consequently increased number of dormant buds from where primary branches originates proportionately. The increase in the concentrations of GA₃ the diameter increases due to a reflection of the stimulation of cambium and its immediate cell progeny (Ko Jae Young et al., 1996). Days taken to first flower bud initiation, earliest bud initiation and flowering was observed with the application of GA₃ 200 ppm. Plants treated with GA₃ @ 200 ppm found to form first bud after transplanting than the plants sprayed with normal water. Gibberellins reduces juvenile period and the termination of juvenile phase, the shoot apical meristem instead of producing leaves and branches start producing buds

(Dahiya and Rana, 2001).

In the present study, application of GA₃ 200 ppm was found to promote the flowering characters in marigold like days taken to first flower appearance, longevity of flower, stalk length, diameter of flower and number of flowers per plant. The changes in floral parameters by the application of GA, can be explained in the light of the fact that GA, was quite effective in reducing juvenile period of plant because of its higher capacity of cell division and cell elongation which cause early maturity in plants (Lockhart, 1960). These parameters might also have increased due to increase in overall vegetative growth of the plant facilitating more photosynthetic area and metabolic activities resulting in more transport and utilization of the photosynthetic product resulting in higher flower yield. These results were also in consonances with the report of (Singh et al., 1991) in African marigold and (Leena et al., 1992) in gladiolus. Every increase in the concentrations of GA₂ enhanced early flowering and long duration of flowering but effect was vice-versa with Ethrel spraying.

Among all the treatments of GA₃ 200 ppm was found most effective. (Singh et al., 1991) observed the similar result with the application of GA₂ African marigold cv. Sunset Gaint.Significantly maximum flower stalk length and maximum flower diameter were recorded with foliar spray of GA,200 ppm. The increase in stalk length and flower diameter might be due to enhanced cell division and cell enlargement, promotion of protein synthesis coupled with higher dry matter of apical dominance (Dalai et al., 2009 and Tyagi and Kumar, 2006). The diameter of flower increased with successive increase in concentration of GA₃. The maximum and minimum diameter was recorded with 200 ppm GA₃ and 25 ppm GA, respectively and reverse was the case with Ethrel, it was maximum with 100 ppm Ethrel and minimum with 400 ppm Ethrel. Similar results have also been reported by (Dehale et al., 1993) in chrysanthemum.

The number of flowers per plant enhanced progressively with the increasing level of GA₃ and maximum number of flowers per plant was noted with the application of 200 ppm GA₃. Similar findings also obtained by Singh et al., (1991) in African marigold, Tripathi et al., (2003) in French marigold and Talukdar and Paswan (1994), Deotale et al., (1994) and Dutta et al., (1993) in chrysanthemum.Maximum number of flowers yield per plant was recorded with application of GA₂ at 200 ppm sprayed plants. These results are in accordance with the findings of Verma and Arha, (2004), Sunita et al., (2008), Amith kumar et al., (2012), Mithilesh kumar et al., (2014) and Suvalaxmi et al., (2016) in African marigold and Devadanam et al., (2007) in tuberose. Maximum yield of flower per plot was recorded at GA₃ 200 ppm followed by NAA 200 ppm. Lower concentration of Ethrel (100 ppm and 200 ppm) increased flower yield per plant but higher concentration (300 ppm and 400 ppm), decreased flower yield per plant compared to control. Tripathi et al., 2003 suggested by the spraying of GA₃ (100, 200 and 400 ppm)

on French marigold increased the flower yield and quality. Thus from the present study, it can be concluded that the foliar application of GA_3 200 ppm on 30 and 60 days after transplanting improved all the growth characters and yield characters in the hybrid supreme yellow of African marigold. This was followed by the foliar application of NAA 200 ppm.

REFERENCES

- Amit Kumar, Jitendra Kumar, Braj Mohan, J.P. Singh, Nathi Ram.2012.Studies on effect of plant growth regulators on growth flowering and yield of African marigold (*Tagetes erecta L.*) cv. Pusa Narangi Gainda, *Annuals* of Horticulture.5(1):47-52.
- Amit kumar, Jitendra kumar, Braj mohan, J.P.Singh, Rajbeer and Nathi Ram. 2011. "Effect of plant growth regulators on growth, flowering and yield of African Marigold (*Tagetes erecta L.*) cv. pusa narangi gainda", The Asian Journal of Horticulture,6 (2):418-422.
- Atam Prakash,S., S. S.Sindhu, S.K.Sharma, and Sangwan. 2001. Effect of GA₃ on yield parameters of marigold. *Haryana Journal of Horticultural Science*, 30(1&2): 54-56.
- Dehale, M.H., P.P. Deshmukh, and V.K. Moharka.1993. Influence of foliar application of GA₃ on quality of *Chrysanthemum. J. Soil Crops*, 3:135-37.
- Deotale, A.B., P.Y. Belorka Patil, V.N. Zade, and M.B. Keche.1994. Effect of date of planting and foliar spray of GA3 on flowering and yield of *Chrysanthemum*. J. Soil and Crops, 4: 148-51.
- Dutta, J.P., M.D. Khadre Abdul and S. Ramadas.1998. Regulation of flowering in *Chrysanthemum cv.* Co.1by Artificial Photoperiod and gibberellic acid. *Karnataka J. Agri. Sci.*11: 251-53.
- Ko Jae Young and Lee Kyeong Koog. 1996. Effect of plant growth regulators on growth and flowering of potted *Lychnis cognata, Aster koraiensis* and *Companular takesimana*. R.D.A. J. Agri. Sci. Hort., 38: 627-32.
- Leena Ravidas, S., P.K.Rajeevan, and, P.K., Valasakumari.1992. Effect of foliar application of growth regulators on the growth, flowering and corn yield of gladiolus (*Gladiolus grandiflorus* L.), South Indian Horticulture, 40:329-335.
- Mithilesh Kumar, A. K. Singh, Ashok Kumar .2014. Effect of plant growth regulators on flowering and yield attributes of African marigold (*Tagetes erecta L.*) cv. Pusa Narangi Gainda. *Plant Archives*, 14(1):363-365.
- Nanjan,K., S. Muthuswamy.1975. Growth and flowering response of Edward rose (Rosa borboniana) to gibberellic acid spray, *South Indian Horticulture*, 23: 94-99.
- Parwal, Leena Ravidas., P. K. Rajeevan, and P.K. Valasakumari.

1992.Effect of foliar application of growth regulators on the growth, flowering and corn yield of gladiolus (*Gladiolus grandiflorus* L.). *South Indian Horticulture*, 40:329-335.

- Sathappan. C. T. 2018. "Effect of plant growth regulators and pinching on growth and flower yield of African Marigold (*Tagetes erecta* 1.)., *J. Hortl. Sci.*vol. 13(1):42-47.
- Singh, R., J. Kumar.2009. Effect of nitrogen and pinching on growth and flowering in African marigold cv Pusa Narangi Gainda. *Annals Hort* 2: 226–227.
- Singh, R.P., M.P. Singh, and G.N.Singh. 1991. Effect of GA₃ and Ethrel on the growth and flowering of African marigold (*Tagetes erecta*). *Haryana J. Hort. Sci.* 20: 81-84.

- Singh, Zile, A.K. Gupta, R.K. Goyal.1996. Effect of NPK on growth and flowering of Dahlia variabilis willd cv. POWDER PUFF. *Haryana J. Hort. Sci.*, 25(2): 4-8.
- Suvalaxmi Patel, A. K. Das, D. K. Dash. 2016. Effect of Plant Growth Regulators on Growth and Yield Attributes of African Marigold (*Tagetes erecta L.*), *International Education & Res. J.* 2(6):44-45.
- B.V., A.V. Barad, P.Neelima1, Nilima Bhosale1.2013. Effect of integrated system of plant nutrition management on growth, yield and flower quality of African marigold (*Tagetes erecta L.*) cv. pusa narangi., *The Asian Journal of Horticulture*, 8(2):466-469.
- Tripathi, A.N., S.N. Tripathi, R.K. Shukla, and G. Pandey. 2003. Effect of GA₃ NAA and CCC on growth and flowering of French marigold. J. Applied Horti. 5: 112-13.