

Plant Archives

Journal homepage: http://www.plantarchives.org DOI Url : https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no2.133

CARBON SEQUESTRATION POTENTIAL OF ROAD SIDE STANDING TREES IN KAMAREDDY MUNICIPALITY, TELANGANA, INDIA

*Anil Ragula, Shyam Mukandam and Suryakiran Banoth

Department of Botany and Forestry Government Arts & Science Degree College, Kamareddy, Telangana *Corresponding author Email: anilragula003@gmail.com

(Date of Receiving : 24-07-2021; Date of Acceptance : 30-09-2021)

ABSTRACT In our study of Kamareddy Municipality area, we laid out a 27 sample plots linearly along the road side. 27 sample plots covered about 2.7 ha of land that means each plot size is 0.1 ha. We enumerated 229 number of tree individuals in sampled area. In the 27 sample plots, we calculated 53.5 M³ 0f tree volume, mean volume per plot is 1.98 M³. Total biomass (AGB+BGB) is about 44.7 tones; mean biomass per plot is around 1.65 tones. Total carbon calculated 1.3 tons, mean carbon is 0.78 tones per plot. The total Carbon sequestration potential is 77.9 tones, mean carbon sequestration potential per plot is about 2.88 tones. By the calculations we assumed per hectare volume is 19.81 M³, biomass is 16.5 tones, carbon stock is 7.88 tones and carbon sequestration potential is 28.85 tons per hectare.

Keywords : Kamareddy, Carbon sequestration potential, Above Ground Biomass and Below Ground Biomass.

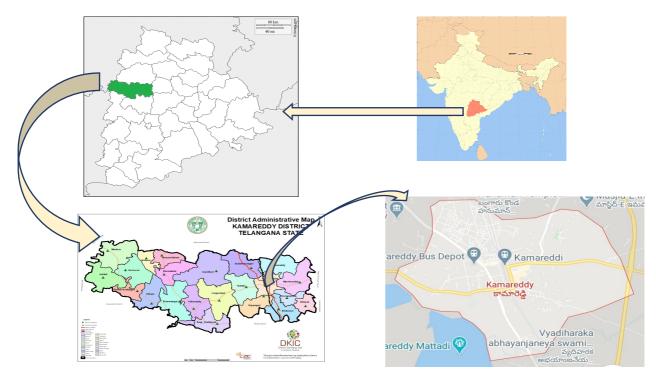
INTRODUCTION

Anthropogenic climate change impacts humans, as well as ecosystems. The rising accumulation of greenhouse gases in the atmosphere is a major cause of global warming. Over the last century, increasing CO₂ levels from 300 ppm to 400 ppm caused an increase in ambient temperature of 0.5°C (IPCC. Climate change 2014). In the next 100years the temperature is predicted to rise by another 0.5-0.60 C. Recently, the World Bank reported that the United States' per capita CO₂ emissions have reached 17.5 t, whereas China and India's are 7.5 and 1.64 t, respectively. China does, however, have the highest overall CO₂ emissions, led by the US and India (World Bank Report. 2018). Forests play an important role in the global carbon cycle and, in particular, tropical forests account for 50 per cent of global biomass in sequestrating total Earth's carbon (Chapin et al., 2002). Nevertheless, forests, which serve as sinks and as a source of energy, are rapidly degraded due to both natural and manmade calamities (Haripriya 2002 & Hooijer et al., 2010).

India has the world's second-largest road network after the US (BRSI.2015-16). Recent reports have revealed that India has a road network of 5.5 million km that is used by 90 % of total passenger traffic and is increasing by 26.93 km per day (IBEF 2009 & Solanki *et al.*, 2006 As a result, road networks across Indian cities are increasingly growing, and existing roads within cities are expanding to boost economic development, jobs, and education services. Road accessibility is a significant determinant of human health and urban quality of life. (Solanki *et al.*, 2006). This will cause traffic congestion, pollution and transport problems, with adverse health effects for urban residents (WHO 2002). Urban inhabitants are exposed to carcinogenic poly-aromatic hydrocarbons (Rahman *et al.*, 2003) and air pollutants, and thus are at higher risk of developing atopic eczema, nasal discharge, blocked nose, sneezing and asthma (Kramer *et al.*, 2019 & Montnemery *et al.*, 2003).

Even if they can escape to the upper atmosphere, trap heat and lead to global warming, Trees consume main emissions, such as CO₂, generated by vehicles and industry. Absorbed CO_2 is absorbed by photosynthesis, and trees are known as effective natural sinks of carbon. So planting trees is a step towards mitigating climate change (Seo and Mendelsohn, 2008). While there are 422 trees per person on Earth, the ratio in India has shrunk to 28:1 (Money, 2015). In India, tree cutting has increased vigorously in recent years for road widening, roads, and drainage. Urban authorities are planting exotic and fast-growing trees with small canopies, such as Backer Ex. K. Heyne , Peltophorum pterocarpum (DC.), Senna siamea (Lam.) H.S. Irwin & Barneby and Delonix regia (Boj. ex. Hook) Raf., Samanea saman (Jacq.) Merr., on roadsides instead of large-canopy, indigenous trees, such as Azadirachta indica A. Juss. (Neem), Tamarindus indica L. (Tamarind), Ficus spp. (Fig trees), Terminalia arjuna and Mangifera indica L. (Mango). Throughout the early 1980's, indigenous and long-lived tree species were used to provide shade and preserve long-term biodiversity for

roadside plantations. The spacing of roadside plantations differed in terms of species selection, since broad tree spacing is optimal for large-crown species, whereas small-crowned, fast-growing tree species gain from narrower spacing (Akhtar *et al.*, 2008 & Zahabu *et al.*, 2015). The survival and growth of street trees depends heavily on traffic load, environmental stress and the level of care and protection, particularly during droughts and water logging (Referowska-Chodak, 2019).


Therefore, the production of roadside plantations in India is a challenging task, since a large number of trees are planted each year, but their survival rate is often low due to strong biotic pressures such as overpopulation, vandal destruction, parked vehicles, road hawkers, animal grazing and fire (Anil Ragula and Krishna, 2020). Successful urban plantations help to create clean air, shade the pedestrians and CO_2 sequestration. When properly handled, urban plantations can store more carbon than natural forests can achieve (Hutyra *et al.*, 2011 & Tang *et al.*, 2016). Tree plants with the

highest CO_2 offset are therefore to be recommended for urban areas. Therefore, carbon estimates can help to better understand the role of trees in the global carbon cycle, and climate change mitigation strategies (Khanal *et al.*, 1970). This study therefore estimated the volume, biomass, and carbon and CO_2 stocks of various tree species along the roads of the municipality of Kamareddy, Telangana, India.

MATERIALS AND METHODS

Study area

Kamareddy is located at 18.3167 °N, 78.3500 °E (falling rain genomics Kamareddy). It covers an area of 14.11 km 2 is 110 km northwards from the state capital Hyderabad and 55 km south from the district headquarters of Nizamabad. After formation of Telangana state in 2014, Kamareddy became district headquarters. According to 2011 census and the statistical information by the Government of Telangana, the population of the town stood at 80378 (Basic information Kamareddy municipality).

(Source: Google Earth)

Present study focused on roadside standing trees that established linearly. A systematic sampling approach was used for tree sampling. 27 sample plots were selected along a stretch of road were laid out across different areas in Kamareddy municipality region. Each plot size $100 \times 10m$ (length × width; 0.1 ha) covering total 2.7 ha for the survey. The tree species were enumerated with help of the measuring tape, girth and height were recorded.

The collected data were used for the estimation of the Volume of the individual tree. The volume was calculated by volumetric equations developed by Forest survey of India (FSI 1996).

Above Ground Biomass (AGB) was calculated by using the formula (Rajput et al., 1996 and Limaye & Sen (1956).)

AGB = volume (m³) × Specific Gravity (kg m³)

Specific gravity of tree species taken from Reyes et al 1992 & Mani and Parthsarathy 2007.

Below Ground Biomass (BGB) calculated by multiplying the AGB by 26% (IPCC 2006)

$BGB = AGB \times 0.26$

The total biomass was calculated by sum of tree's AGB and BGB. Carbon stocks were determined by multiplying the total dry biomass by the default carbon fraction (0.475), which is the mean carbon content of the biomass

Carbon (t) = Biomass (t) $\times 0.475$

In the roadside plantations, the carbon storage in individual tree species was calculated by adding the carbon stock values of various trees to all study plots. The estimated carbon stock was converted into CO_2 stock by multiplying the carbon stock by 3.666 to determine tree-biomass CO_2

assimilation (Chandra and Bhardwaj, 2018; Kanime et at., 2013).

RESULTS AND DISCUSSION

In our study of Kamareddy municipality area, we laid out a 27 sample plots linearly along the road side. 27 sample plots covered about 2.7 ha of land that means each plot size is 0.1 ha. We enumerated 229 number of tree individuals in sampled area. The total sampled area was home for 49 no. of species belongs to the 20 families. The dominant family was Fabaceae followed by Bignoniaceae and Moraceae (Table1).

Table 1 : Tree Species enumerated in 27 sample plots in Kamareddy Municipality

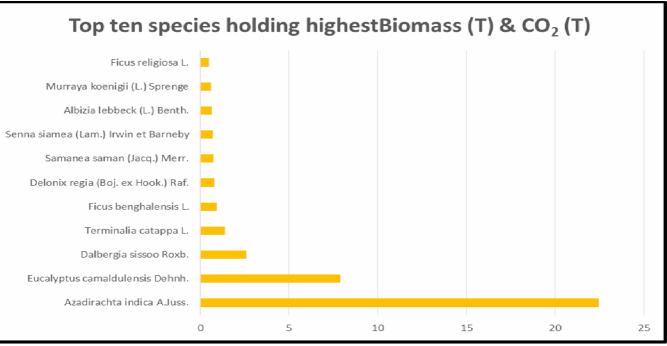
S. No	Scientific name	Family	No. of individuals		
1.	Aegle marmelos (L.) Correa	Rutaceae	1		
2.	Albizia amara (Roxb.) Boiv.	Fabaceae	1		
3.	Albizia lebbeck (L.) Benth.	Fabaceae	6		
4.	Alstonia scholaris (L.) R.Br.	Apocynaceae	1		
5.	Annona reticulata L.	Annonaceae	1		
6.	Artocarpus integrifolia Linn. f.	Moraceae	1		
7.	Azadirachta indica A. Juss.	Meliaceae	31		
8.	Butea monosperma (Lam.) Taub.	Fabaceae	1		
9.	Casuarina equisetifolia L.	Casuarinaceae	4		
10.	Ceiba pentandra (L.) Gaertn.	Malvaceae	3		
11.	Cocos nucifera L.	Arecaceae	3		
12.	Dalbergia latifolia Roxb.	Fabaceae	1		
13.	Dalbergia paniculata Roxb.	Fabaceae	2		
14.	Dalbergia sissoo Roxb.	Fabaceae	15		
15.	Delonix regia (Boj. ex Hook.) Raf.	Fabaceae	13		
16.	Eucalyptus camaldulensis Dehnh.	Myrtaceae	5		
17.	Ficus benghalensis L.	Moraceae	1		
18.	Ficus racemose L.	Moraceae	1		
19.	Ficus religiosa L.	Moraceae	4		
20.	Grevillea robusta A.Cunn. ex R.Br.	Proteaceae	1		
21.	Holoptelea integrifolia (Roxb.) Planch.	Ulmaceae	2		
22.	Jacaranda mimosifolia D.Don	Bignoniaceae	3		
23.	Lagerstroemia parviflora Roxb.	Lythraceae	1		
24.	Lannea coromandelica (Houtt.) Merr.	Anacardiaceae	1		
25.	Leucaena leucocephala (Lam.) de Wit	Fabaceae	9		
26.	Mangifera indica L	Anacardiaceae	2		
27.	Melia azedarach L	Meliaceae	2		
28.	Millettia pinnata (L.) Panigrahi	Fabaceae	7		
29.	Millingtonia hortensis L.f.	Bignoniaceae	8		
30.	Monoon longifolium Sonn. B.Xue & R.M.K. Saunders	Annonaceae	8		
31.	Monoon longyouum Sonn. D.Xde & K.W.K. Saunders Moringa oleifera Lam.	Moringaceae	1		
32.	Murraya koenigii (L.) Sprenge	Rutaceae	1		
33.	Nyctanthes arbor-tristisL.	Oleaceae	1		
34.	Peltophorum pterocarpum (DC.) K.Heyne	Fabaceae	10		
35.	Phoenix sylvestris (L.) Roxb., 1832	Arecaceae	4		
36.	Phyllanthus emblica L.	Phyllanthaceae	2		
37.	Pithecellobium dulce (Roxb.) Benth.	Fabaceae	5		
38.	Prosopis juliflora (Sw.) DC.	Fabaceae	4		
39.	Samanea saman (Jacq.) Merr.	Fabaceae	11		
40.	Senna siamea (Lam.) Irwin et Barneby	Fabaceae	11		
41.	Spathodea campanulata P.Beauv.	Bignoniaceae	8		
42.	Sterculia foetida L.	Malvaceae	4		
42.	Sterculta Joenaa L. Syzygium cumini (L.) Skeels.	Marvaceae	3		
45.	<i>Tabebuia rosea</i> DC.	Bignoniaceae	<u> </u>		
	Tabebula rosed DC. Tamarindus indica L.	U			
45.		Fabaceae	1		
46.	Tectona grandis L.f.	Lamiaceae	3		
47.	Terminalia catappa L.	Combretaceae	5		
48.	<i>Thespesia populnea</i> (L.) Sol. ex Correa	Malvaceae	3		
49.	Vachellia nilotica (L.) P.J.H. Hurter & Mabb.	Fabaceae	9		

In the 27 sample plots, we calculated 53.5 M^3 Of tree volume, mean volume per plot is 1.98 M^3 . Total biomass (AGB+BGB) is about 44.7 tones; mean biomass per plot is

around 1.65 tones. Total carbon calculated 21.3 tons, mean carbon is 0.78 tones per plot. The total Carbon sequestration potential is 77.9 tones, mean carbon sequestration potential

per plot is about 2.88 tones. By the calculations we assumed per hectare volume is 19.81 M^3 , biomass is 16.5 tones, carbon stock is 7.88 tones and carbon sequestration potential is 28.85 tons per hectare. Sample plot-8 having highest volume, biomass, carbon and CO_2 sequestration potential capacity. Sample plot no-15 holding the lowest volume, biomass, carbon and CO_2 sequestration potential capacity (Table no.2).

Table 2 : Plot wise volume, biomass, carbon and CO₂ sequestration potential


Sample	Location	Volume	AGB	BGB	Total biomass	Carbon	CO ₂
plot no.	Location	(m^{3})	(tons)	(tons)	(tons)	(tons)	(tons)
1	Siricillaroad	1.897	1.237	0.322	1.559	0.741	2.715
2	Yellamma Temple	2.277	1.337	0.348	1.685	0.800	2.934
3	Near Kanyakaparameshwari Temple	0.942	0.632	0.164	0.796	0.378	1.387
4	Ramareddy Road	0.441	0.274	0.071	0.345	0.164	0.601
5	Driver's colony	1.004	0.631	0.164	0.795	0.378	1.385
6	Shabdhipur Road	1.387	0.899	0.234	1.133	0.538	1.972
7	Naaj Complex	0.515	0.312	0.081	0.393	0.187	0.684
8	Old Bustand	21.032	14.576	3.790	18.365	8.723	31.980
9	PMH Temple Road	0.705	0.477	0.124	0.601	0.286	1.047
10	Railway Gate	0.605	0.352	0.092	0.444	0.211	0.772
11	Vadloor Road green homes	0.699	0.435	0.113	0.548	0.260	0.954
12	Vasavi School	0.579	0.375	0.097	0.472	0.224	0.822
13	Snehapuri Colony	0.347	0.209	0.054	0.263	0.125	0.458
14	Ashoknagar Colony	0.317	0.205	0.053	0.258	0.123	0.449
15	Near Vijaya Bank	0.235	0.141	0.037	0.178	0.085	0.310
16	CSI Church	0.431	0.254	0.066	0.321	0.152	0.558
17	Tekrial Road	0.980	0.643	0.167	0.810	0.385	1.410
18	NGO's Colony	0.519	0.355	0.092	0.448	0.213	0.780
19	Sai Baba Temple	1.646	1.066	0.277	1.343	0.638	2.338
20	Municipal Office	10.208	6.861	1.784	8.645	4.106	15.054
21	Court Road	0.974	0.628	0.163	0.791	0.376	1.378
22	Jeevadhan Hospital	1.128	0.740	0.192	0.933	0.443	1.624
23	Union Bank of India	0.909	0.567	0.147	0.714	0.339	1.243
24	Housing Board colony	1.184	0.729	0.190	0.919	0.436	1.600
25	Vasavinagar	0.572	0.342	0.089	0.431	0.205	0.751
26	GodamRoad	1.250	0.786	0.204	0.990	0.470	1.725
27	IslampurColony	0.696	0.452	0.117	0.569	0.270	0.991
	Total	53.5	35.5	9.2	44.7	21.3	77.9

In the entire sampled area of 2.7 ha, dominant species is *Azadirachta indica* A.Juss.enumerated 31 tree individuals and followed by *Dalbergia latifolia* Roxb15 tree individuals, *Senna siamea* (Lam.) Irwin et Barneby 13 tree individuals, *Samanea saman*(Jacq.) Merr. 11 and *Peltophorum* *Pterocarpacum* (DC.) K.Heyne 10 tree individuals (Table 1). *Azadirchta indica*A. Juss. species having highest Volume, Biomass, Carbon and CO_2 sequestration potential and followed by *Eucalyptus camaldulensis* Dehnh., *Dalbergia sissoo* Roxb. and *Terminalia catappa* L. (Table 3) (Fig. 1).

Table 3 : Species wise total volume, biomass, AGB, BGB, carbon and CO₂ in all Sampled Plots (list is in Decreasing Order)

S.No	Name of the species	Volume (m ³)	AGB (tons)	BGB (tons)	Total biomass (tons)	Total carbon (tons)	CO ₂ (tons)
1	Azadirachta indica A.Juss.	25.74	17.838	4.638	22.475	10.676	39.138
2	Eucalyptus camaldulensis Dehnh.	9.247	6.251	1.625	7.876	3.741	13.716
3	Dalbergia sissoo Roxb.	3.053	2.055	0.534	2.589	1.23	4.509
4	Terminalia catappa L.	1.788	1.099	0.286	1.385	0.658	2.412
5	Ficus benghalensis L.	1.2	0.738	0.192	0.93	0.442	1.619
6	Delonix regia (Boj. ex Hook.) Raf.	1.008	0.622	0.162	0.784	0.373	1.366
7	Samanea saman (Jacq.) Merr.	0.969	0.596	0.155	0.751	0.357	1.308
8	Senna siamea (Lam.) Irwin et Barneby	0.927	0.57	0.148	0.719	0.341	1.251
9	Albizia lebbeck (L.) Benth.	0.949	0.507	0.132	0.639	0.303	1.112
10	Murraya koenigii (L.) Sprenge	0.755	0.465	0.121	0.585	0.278	1.019
11	Ficus religiosa L.	0.63	0.388	0.101	0.488	0.232	0.851
12	Syzygium cumini (L.) Skeels.	0.566	0.366	0.095	0.462	0.219	0.804
13	Leucaena leucocephala (Lam.) de Wit	0.524	0.315	0.082	0.397	0.189	0.691
14	Phyllanthus emblica L.	0.503	0.309	0.08	0.389	0.185	0.678

16 Spathodea campanulata P.Beauv. 0.466 0.298 0.078 0.376 0.178 0.654 17 Millettia pinnata (L.) Panigrahi 0.467 0.271 0.071 0.342 0.162 0.596 18 Pithecellobium dulce (Roxb.) Benth. 0.381 0.235 0.061 0.296 0.14 0.515 19 Vachellia nilotica (L.) P.J.H.Hurter & Mabb. 0.288 0.179 0.046 0.225 0.107 0.392 21 Prosopis juliflora (Sw.) DC. 0.233 0.163 0.042 0.205 0.098 0.373 22 Nytcanthes arbortrisits L. 0.235 0.144 0.038 0.182 0.082 0.302 24 Cocos nucifera L. 0.175 0.119 0.031 0.15 0.071 0.261 25 Sterculia foetida L. 0.233 0.119 0.031 0.15 0.071 0.261 26 Phoenix sybvestris (L.) Roxb. 0.117 0.030 0.148 0.067 0.244 29 Jacaranda mim					1			
17 Millettia pinnata (L.) Panigrahi 0.467 0.271 0.071 0.342 0.162 0.596 18 Pithecellobium dulce (Roxb.) Benth. 0.381 0.235 0.061 0.296 0.14 0.515 19 Vachellia nilotica (L.) P.J.H.Hurter & Mabb. 0.288 0.179 0.046 0.225 0.107 0.392 21 Prosopis juliflora (Sw.) DC. 0.233 0.163 0.042 0.205 0.098 0.382 22 Nyctanthes arbor-tristis L. 0.235 0.144 0.038 0.182 0.086 0.317 23 Casuarina equisetifolia L. 0.233 0.119 0.031 0.15 0.071 0.261 24 Cocos nucifera L. 0.233 0.119 0.031 0.15 0.071 0.261 25 Sterculia foetida L 0.233 0.119 0.031 0.15 0.071 0.261 26 Peltophorum pterocarpum (DC.) K.Heyne 0.117 0.038 0.021 0.104 0.067 0.244 28	15	Melia azedarach L.	0.466	0.298	0.078	0.376	0.179	0.655
18 Pithecellobium dulce (Roxb.) Benth. 0.381 0.235 0.061 0.296 0.14 0.515 19 Vachellia nilotica (L.) P.J.H.Hurter & Mabb. 0.288 0.193 0.05 0.243 0.116 0.442 20 Dalbergia paniculata Roxb. 0.288 0.179 0.046 0.225 0.107 0.392 21 Prosopis juliflora (Sw.) DC. 0.233 0.163 0.042 0.205 0.098 0.388 22 Nyctanthes arbor-tristis L. 0.235 0.144 0.038 0.182 0.086 0.317 23 Casuarina equisetifolia L. 0.233 0.119 0.031 0.15 0.071 0.261 25 Sterculia foetida L 0.233 0.119 0.031 0.15 0.071 0.261 26 Phoenix sylvestris (L.) Roxb. 0.19 0.117 0.03 0.148 0.07 0.227 27 Tectona grandis Lf. 0.175 0.111 0.029 0.14 0.667 0.244 29 Jac								
19 Vachellia nilotica (L.) P.J.H.Hurter & Mabb. 0.288 0.193 0.05 0.243 0.116 0.424 20 Dalbergia paniculata Roxb. 0.288 0.179 0.046 0.225 0.107 0.392 21 Prosopis juliflora (Sw.) DC. 0.233 0.163 0.042 0.205 0.098 0.358 22 Nyctanthes arbor-trisits L. 0.235 0.144 0.038 0.182 0.086 0.317 23 Casuarina equisetifolia L. 0.224 0.137 0.036 0.173 0.082 0.302 24 Cocos nucifera L. 0.175 0.119 0.031 0.15 0.071 0.261 25 Sterculia foetida L. 0.233 0.117 0.03 0.148 0.067 0.224 26 Phoenix sylvestris (L.) Roxb. 0.175 0.111 0.029 0.14 0.067 0.244 28 Peltophorum pterocarpum (DC.) K.Heyne 0.116 0.083 0.021 0.104 0.049 0.181 30 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>								
20 Dalbergia paniculara Roxb. 0.288 0.179 0.046 0.225 0.107 0.392 21 Prosopis juliflora (Sw.) DC. 0.233 0.163 0.042 0.205 0.098 0.358 22 Nyctanthes arbor-tristis L. 0.235 0.144 0.038 0.182 0.086 0.317 23 Casuarina equisetifolia L. 0.224 0.137 0.036 0.173 0.082 0.302 24 Cocos nucifera L. 0.175 0.119 0.031 0.15 0.071 0.261 25 Sterculia foetida L. 0.233 0.117 0.03 0.148 0.07 0.257 27 Tectona grandis L.f. 0.175 0.111 0.029 0.14 0.066 0.204 29 Jacaranda mimosifolia D.Don 0.175 0.083 0.021 0.103 0.049 0.181 30 Thespesia popularea (L.) Sol. ex Correa 0.133 0.082 0.021 0.103 0.049 0.137 31 Moringa oleifera Lam.<								
21 Prosopis juliflora (Sw.) DC. 0.233 0.163 0.042 0.205 0.098 0.358 22 Nyctanthes arbor-tristis L. 0.235 0.144 0.038 0.182 0.086 0.317 23 Casuarina equisetifolia L. 0.224 0.137 0.036 0.173 0.082 0.302 24 Cocos nucifera L. 0.137 0.031 0.15 0.071 0.261 25 Sterculia foetida L. 0.233 0.119 0.031 0.15 0.071 0.261 26 Phoenix sylvestris (L.) Roxb. 0.19 0.117 0.03 0.148 0.07 0.257 27 Tectona grandis L.f. 0.175 0.111 0.029 0.14 0.066 0.244 29 Jacaranda minosifolia D.Don 0.175 0.083 0.021 0.103 0.049 0.181 30 Thespesia populnea (L.) Sol. ex Correa 0.136 0.078 0.02 0.098 0.047 0.171 32 Dalbergia latifolia Roxb. 0.1		Vachellia nilotica (L.) P.J.H.Hurter & Mabb.	0.288	0.193	0.05	0.243	0.116	0.424
22 Nyctanthes arbor-tristis L. 0.235 0.144 0.038 0.182 0.086 0.317 23 Casuarina equisetifolia L. 0.224 0.137 0.036 0.173 0.082 0.302 24 Cocos nucifera L. 0.175 0.119 0.031 0.15 0.071 0.261 25 Sterculia foetida L. 0.233 0.119 0.031 0.15 0.071 0.261 26 Phoenix sylvestris (L.) Roxb. 0.19 0.117 0.03 0.148 0.07 0.257 27 Tectona grandis L.f. 0.175 0.111 0.029 0.14 0.067 0.244 28 Peliophorum pterocarpum (DC.) K.Heyne 0.116 0.003 0.024 0.117 0.056 0.024 30 Thespesia populnea (L.) Sol. ex Correa 0.133 0.082 0.021 0.103 0.049 0.18 31 Moringa oleifera Lam. 0.126 0.078 0.022 0.098 0.041 0.15 33 Magifera indica L <td>20</td> <td>Dalbergia paniculata Roxb.</td> <td>0.288</td> <td>0.179</td> <td>0.046</td> <td>0.225</td> <td>0.107</td> <td>0.392</td>	20	Dalbergia paniculata Roxb.	0.288	0.179	0.046	0.225	0.107	0.392
23 Casuarina equisetifolia L. 0.224 0.137 0.036 0.173 0.082 0.302 24 Cocos nucifera L. 0.175 0.119 0.031 0.15 0.071 0.261 25 Sterculia foetida L. 0.233 0.119 0.031 0.15 0.071 0.261 26 Phoenix sylvestris (L.) Roxb. 0.19 0.117 0.03 0.148 0.07 0.257 27 Tectona grandis L.f. 0.175 0.111 0.029 0.14 0.067 0.244 28 Peltophorum pterocarpum (DC.) K.Heyne 0.116 0.093 0.024 0.117 0.056 0.204 29 Jacaranda mimosifolia D.Don 0.175 0.083 0.021 0.104 0.049 0.181 30 Thespesia populnea (L.) Sol. ex Correa 0.136 0.082 0.021 0.103 0.044 0.171 32 Dalbergia latifolia Roxb. 0.106 0.068 0.018 0.086 0.041 0.15 33 Mangifera indica	21	Prosopis juliflora (Sw.) DC.	0.233	0.163	0.042	0.205	0.098	0.358
24 Cocos nucifera L. 0.175 0.119 0.031 0.15 0.071 0.261 25 Sterculia foetida L. 0.233 0.119 0.031 0.15 0.071 0.261 26 Phoenix sylvestris (L.) Roxb. 0.19 0.117 0.03 0.148 0.07 0.257 27 Tectona grandis L.f. 0.175 0.111 0.029 0.14 0.067 0.244 28 Peltophorum pterocarpum (DC.) K.Heyne 0.116 0.093 0.024 0.117 0.056 0.204 29 Jacaranda mimosifolia D.Don 0.175 0.083 0.021 0.104 0.049 0.18 30 Thespesia populnea (L.) Sol. ex Correa 0.133 0.082 0.021 0.103 0.049 0.18 31 Moringa oleifera Lam. 0.126 0.078 0.02 0.098 0.047 0.171 32 Dalbergia latifolia Roxb. 0.106 0.068 0.018 0.086 0.041 0.15 33 Margifera indica L	22	Nyctanthes arbor-tristis L.	0.235	0.144	0.038	0.182	0.086	0.317
25 Sterculia oetida L. 0.233 0.119 0.031 0.15 0.071 0.261 26 Phoenix sylvestris (L.) Roxb. 0.19 0.117 0.03 0.148 0.07 0.257 27 Tectona grandis L.f. 0.175 0.111 0.029 0.14 0.067 0.244 28 Peltophorum pterocarpum (DC.) K.Heyne 0.116 0.093 0.024 0.117 0.056 0.204 29 Jacaranda mimosifolia D.Don 0.175 0.083 0.021 0.104 0.049 0.181 30 Thespesia populnea (L.) Sol. ex Correa 0.133 0.082 0.021 0.103 0.049 0.181 31 Moringa oleifera Lam. 0.126 0.078 0.02 0.098 0.047 0.171 32 Dalbergia latifolia Roxb. 0.106 0.068 0.018 0.086 0.041 0.15 33 Mangifera indica L 0.116 0.055 0.017 0.082 0.037 0.137 34 Lagerstroemia parvifl	23	Casuarina equisetifolia L.	0.224	0.137	0.036	0.173	0.082	0.302
26 Phoenix sylvestris (L.) Roxb. 0.19 0.117 0.03 0.148 0.07 0.257 27 Tectona grandis L.f. 0.175 0.111 0.029 0.14 0.067 0.244 28 Peltophorum pterocarpum (DC.) K.Heyne 0.116 0.093 0.024 0.117 0.056 0.204 29 Jacaranda mimosifolia D.Don 0.175 0.083 0.021 0.104 0.049 0.181 30 Thespesia populnea (L.) Sol. ex Correa 0.133 0.082 0.021 0.103 0.049 0.181 31 Moringa oleifera Lam. 0.126 0.078 0.02 0.098 0.047 0.171 32 Dalbergia latifolia Roxb. 0.116 0.065 0.017 0.082 0.039 0.143 34 Lagerstroemia parviflora Roxb. 0.1 0.062 0.016 0.078 0.037 0.137 35 Holoptelea integrifolia (Roxb.) Planch. 0.116 0.058 0.041 0.025 0.031 0.112 37	24	Cocos nucifera L.	0.175	0.119	0.031	0.15	0.071	0.261
27 Tectona grandis L.f. 0.175 0.111 0.029 0.14 0.067 0.244 28 Peltophorum pterocarpum (DC.) K.Heyne 0.116 0.093 0.024 0.117 0.056 0.204 29 Jacaranda mimosifolia D.Don 0.175 0.083 0.021 0.104 0.049 0.181 30 Thespesia populnea (L.) Sol. ex Correa 0.133 0.082 0.021 0.103 0.049 0.181 31 Moringa oleifera Lam. 0.126 0.078 0.02 0.098 0.047 0.171 32 Dalbergia latifolia Roxb. 0.106 0.068 0.018 0.086 0.041 0.15 33 Margifera indica L 0.116 0.065 0.017 0.082 0.039 0.143 34 Lagerstroemia parviflora Roxb. 0.1 0.062 0.016 0.078 0.037 0.137 35 Holoptelea integrifolia (Roxb.) Planch. 0.116 0.058 0.051 0.013 0.062 0.029 0.017	25	Sterculia foetida L.	0.233	0.119	0.031	0.15	0.071	0.261
28 Peltophorum pterocarpum (DC.) K.Heyne 0.116 0.093 0.024 0.117 0.056 0.204 29 Jacaranda mimosifolia D.Don 0.175 0.083 0.021 0.104 0.049 0.181 30 Thespesia populnea (L.) Sol. ex Correa 0.133 0.082 0.021 0.103 0.049 0.18 31 Moringa oleifera Lam. 0.126 0.078 0.02 0.098 0.047 0.171 32 Dalbergia latifolia Roxb. 0.106 0.068 0.018 0.086 0.041 0.15 33 Mangifera indica L 0.116 0.065 0.017 0.082 0.039 0.143 34 Lagerstroemia parviflora Roxb. 0.1 0.062 0.016 0.078 0.037 0.137 35 Holoptelea integrifolia (Roxb.) Planch. 0.116 0.058 0.051 0.013 0.065 0.031 0.112 37 Ceiba pentandra (L.) Gaertn. 0.175 0.049 0.013 0.062 0.029 0.093	26	Phoenix sylvestris (L.) Roxb.	0.19	0.117	0.03	0.148	0.07	0.257
29 Jacaranda mimosifolia D.Don 0.175 0.083 0.021 0.104 0.049 0.181 30 Thespesia populnea (L.) Sol. ex Correa 0.133 0.082 0.021 0.103 0.049 0.18 31 Moringa oleifera Lam. 0.126 0.078 0.02 0.098 0.047 0.171 32 Dalbergia latifolia Roxb. 0.106 0.068 0.018 0.086 0.041 0.15 33 Mangifera indica L 0.116 0.065 0.017 0.082 0.039 0.143 34 Lagerstroemia parviflora Roxb. 0.1 0.062 0.016 0.078 0.037 0.137 35 Holoptelea integrifolia (Roxb.) Planch. 0.116 0.058 0.013 0.065 0.031 0.112 37 Ceiba pentandra (L.) Gaertn. 0.175 0.049 0.013 0.062 0.029 0.093 39 Albizia amara (Roxb.) Boiv. 0.058 0.042 0.011 0.053 0.022 0.082 41	27	Tectona grandis L.f.	0.175	0.111	0.029	0.14	0.067	0.244
30 Thespesia populnea (L.) Sol. ex Correa 0.133 0.082 0.021 0.103 0.049 0.18 31 Moringa oleifera Lam. 0.126 0.078 0.02 0.098 0.047 0.171 32 Dalbergia latifolia Roxb. 0.106 0.068 0.018 0.086 0.041 0.15 33 Mangifera indica L 0.116 0.065 0.017 0.082 0.039 0.143 34 Lagerstroemia parviflora Roxb. 0.1 0.062 0.016 0.078 0.037 0.137 35 Holoptelea integrifolia (Roxb.) Planch. 0.116 0.058 0.015 0.073 0.035 0.128 36 Aegle marmelos (L.) Correa 0.058 0.051 0.013 0.062 0.029 0.107 38 Annona reticulata L. 0.058 0.043 0.011 0.053 0.025 0.092 40 Monoon longifolium Sonn. B.Xue & R.M.K.Saunders 0.058 0.042 0.011 0.054 0.022 0.083 41	28	Peltophorum pterocarpum (DC.) K.Heyne	0.116	0.093	0.024	0.117	0.056	0.204
31 Moringa oleifera Lam. 0.126 0.078 0.02 0.098 0.047 0.171 32 Dalbergia latifolia Roxb. 0.106 0.068 0.018 0.086 0.041 0.15 33 Mangifera indica L 0.116 0.065 0.017 0.082 0.039 0.143 34 Lagerstroemia parviflora Roxb. 0.1 0.062 0.016 0.078 0.037 0.137 35 Holoptelea integrifolia (Roxb.) Planch. 0.116 0.058 0.015 0.073 0.035 0.128 36 Aegle marmelos (L.) Correa 0.058 0.051 0.013 0.062 0.029 0.107 38 Annona reticulata L. 0.058 0.043 0.011 0.054 0.025 0.093 39 Albizia amara (Roxb.) Boiv. 0.058 0.042 0.011 0.053 0.024 0.087 41 Ficus racemose L. 0.061 0.038 0.01 0.047 0.022 0.082 42 Grevillea robusta A.Cunn. ex R	29	Jacaranda mimosifolia D.Don	0.175	0.083	0.021	0.104	0.049	0.181
31 Moringa oleifera Lam. 0.126 0.078 0.02 0.098 0.047 0.171 32 Dalbergia latifolia Roxb. 0.106 0.068 0.018 0.086 0.041 0.15 33 Mangifera indica L 0.116 0.065 0.017 0.082 0.039 0.143 34 Lagerstroemia parviflora Roxb. 0.1 0.062 0.016 0.078 0.037 0.137 35 Holoptelea integrifolia (Roxb.) Planch. 0.116 0.058 0.015 0.073 0.035 0.128 36 Aegle marmelos (L.) Correa 0.058 0.051 0.013 0.062 0.029 0.107 38 Annona reticulata L. 0.058 0.043 0.011 0.054 0.025 0.092 39 Albizia amara (Roxb.) Boiv. 0.058 0.042 0.011 0.053 0.022 0.024 0.083 41 Ficus racemose L. 0.061 0.038 0.01 0.044 0.021 0.079 42 Grevill	30	Thespesia populnea (L.) Sol. ex Correa	0.133	0.082	0.021	0.103	0.049	0.18
32 Dalbergia latifolia Roxb. 0.106 0.068 0.018 0.086 0.041 0.15 33 Mangifera indica L 0.116 0.065 0.017 0.082 0.039 0.143 34 Lagerstroemia parviflora Roxb. 0.1 0.062 0.016 0.078 0.037 0.137 35 Holoptelea integrifolia (Roxb.) Planch. 0.116 0.058 0.015 0.073 0.035 0.128 36 Aegle marmelos (L.) Correa 0.058 0.051 0.013 0.065 0.031 0.112 37 Ceiba pentandra (L.) Gaertn. 0.175 0.049 0.013 0.062 0.025 0.093 39 Albizia amara (Roxb.) Boiv. 0.058 0.042 0.011 0.053 0.025 0.092 40 Monoon longifolium Sonn. B.Xue & R.M.K.Saunders 0.058 0.04 0.01 0.054 0.023 0.083 41 Ficus racemose L. 0.061 0.038 0.01 0.044 0.021 0.079 43 <	31		0.126	0.078	0.02	0.098	0.047	0.171
33 Mangifera indica L 0.116 0.065 0.017 0.082 0.039 0.143 34 Lagerstroemia parviflora Roxb. 0.1 0.062 0.016 0.078 0.037 0.137 35 Holoptelea integrifolia (Roxb.) Planch. 0.116 0.058 0.015 0.073 0.035 0.128 36 Aegle marmelos (L.) Correa 0.058 0.051 0.013 0.062 0.029 0.107 38 Annona reticulata L. 0.058 0.043 0.011 0.053 0.025 0.093 39 Albizia amara (Roxb.) Boiv. 0.058 0.042 0.011 0.053 0.025 0.092 40 Monoon longifolium Sonn. B.Xue & R.M.K.Saunders 0.058 0.042 0.011 0.053 0.022 0.083 41 Ficus racemose L. 0.061 0.038 0.01 0.047 0.022 0.082 43 Millingtonia hortensis L.f. 0.058 0.037 0.01 0.047 0.022 0.082 45 A	32		0.106	0.068	0.018	0.086	0.041	0.15
34 Lagerstroemia parviflora Roxb. 0.1 0.062 0.016 0.078 0.037 0.137 35 Holoptelea integrifolia (Roxb.) Planch. 0.116 0.058 0.015 0.073 0.035 0.128 36 Aegle marmelos (L.) Correa 0.058 0.051 0.013 0.065 0.031 0.112 37 Ceiba pentandra (L.) Gaertn. 0.175 0.049 0.013 0.062 0.029 0.107 38 Annona reticulata L. 0.058 0.043 0.011 0.054 0.025 0.093 39 Albizia amara (Roxb.) Boiv. 0.058 0.042 0.011 0.053 0.025 0.092 40 Monoon longifolium Sonn. B.Xue & R.M.K.Saunders 0.058 0.04 0.01 0.055 0.024 0.083 41 Ficus racemose L. 0.061 0.038 0.01 0.047 0.022 0.082 43 Millingtonia hortensis L.f. 0.058 0.037 0.01 0.045 0.021 0.079 44	33		0.116	0.065	0.017	0.082	0.039	0.143
35 Holoptelea integrifolia (Roxb.) Planch. 0.116 0.058 0.015 0.073 0.035 0.128 36 Aegle marmelos (L.) Correa 0.058 0.051 0.013 0.065 0.031 0.112 37 Ceiba pentandra (L.) Gaertn. 0.175 0.049 0.013 0.062 0.029 0.107 38 Annona reticulata L. 0.058 0.043 0.011 0.054 0.025 0.093 39 Albizia amara (Roxb.) Boiv. 0.058 0.042 0.011 0.055 0.024 0.092 40 Monoon longifolium Sonn. B.Xue & R.M.K.Saunders 0.058 0.042 0.011 0.055 0.024 0.087 41 Ficus racemose L. 0.061 0.038 0.01 0.047 0.022 0.082 42 Grevillea robusta A.Cunn. ex R.Br. 0.058 0.037 0.01 0.047 0.022 0.082 43 Millingtonia hortensis L.f. 0.058 0.032 0.080 0.044 0.019 0.07 44 <td>34</td> <td>01</td> <td>0.1</td> <td>0.062</td> <td>0.016</td> <td>0.078</td> <td>0.037</td> <td>0.137</td>	34	01	0.1	0.062	0.016	0.078	0.037	0.137
36 Aegle marmelos (L.) Correa 0.058 0.051 0.013 0.065 0.031 0.112 37 Ceiba pentandra (L.) Gaertn. 0.175 0.049 0.013 0.062 0.029 0.107 38 Annona reticulata L. 0.058 0.043 0.011 0.054 0.025 0.093 39 Albizia amara (Roxb.) Boiv. 0.058 0.042 0.011 0.053 0.025 0.092 40 Monoon longifolium Sonn. B.Xue & R.M.K.Saunders 0.058 0.04 0.01 0.05 0.024 0.087 41 Ficus racemose L. 0.061 0.038 0.01 0.048 0.023 0.083 42 Grevillea robusta A.Cunn. ex R.Br. 0.058 0.037 0.01 0.047 0.022 0.082 43 Millingtonia hortensis L.f. 0.058 0.036 0.009 0.043 0.02 0.074 45 Artocarpus integrifolia Linn. f. 0.058 0.032 0.008 0.037 0.017 0.064 47	35	Holoptelea integrifolia (Roxb.) Planch.	0.116	0.058	0.015	0.073	0.035	0.128
38 Annoa reticulata L. 0.058 0.043 0.011 0.054 0.025 0.093 39 Albizia amara (Roxb.) Boiv. 0.058 0.042 0.011 0.053 0.025 0.092 40 Monoon longifolium Sonn. B.Xue & R.M.K.Saunders 0.058 0.04 0.01 0.05 0.024 0.087 41 Ficus racemose L. 0.061 0.038 0.01 0.048 0.023 0.083 42 Grevillea robusta A.Cunn. ex R.Br. 0.058 0.037 0.01 0.047 0.022 0.082 43 Millingtonia hortensis L.f. 0.058 0.036 0.009 0.045 0.021 0.079 44 Tabebuia rosea DC. 0.058 0.034 0.009 0.043 0.02 0.074 45 Artocarpus integrifolia Linn. f. 0.058 0.032 0.008 0.04 0.019 0.07 46 Alstonia scholaris (L.) R.Br. 0.081 0.029 0.008 0.037 0.017 0.064 47 Butea	36		0.058	0.051	0.013	0.065	0.031	0.112
38 Annona reticulata L. 0.058 0.043 0.011 0.054 0.025 0.093 39 Albizia amara (Roxb.) Boiv. 0.058 0.042 0.011 0.053 0.025 0.092 40 Monoon longifolium Sonn. B.Xue & R.M.K.Saunders 0.058 0.04 0.01 0.05 0.024 0.087 41 Ficus racemose L. 0.061 0.038 0.01 0.048 0.023 0.083 42 Grevillea robusta A.Cunn. ex R.Br. 0.058 0.037 0.01 0.047 0.022 0.082 43 Millingtonia hortensis L.f. 0.058 0.036 0.009 0.045 0.021 0.079 44 Tabebuia rosea DC. 0.058 0.034 0.009 0.043 0.02 0.074 45 Artocarpus integrifolia Linn. f. 0.058 0.032 0.008 0.037 0.017 0.064 47 Butea monosperma (Lam.) Taub. 0.056 0.026 0.007 0.033 0.016 0.057 48 Lan	37	Ceiba pentandra (L.) Gaertn.	0.175	0.049	0.013	0.062	0.029	0.107
40 Monoon longifolium Sonn. B.Xue & R.M.K.Saunders 0.058 0.04 0.01 0.05 0.024 0.087 41 Ficus racemose L. 0.061 0.038 0.01 0.048 0.023 0.083 42 Grevillea robusta A.Cunn. ex R.Br. 0.058 0.037 0.01 0.047 0.022 0.082 43 Millingtonia hortensis L.f. 0.058 0.036 0.009 0.045 0.021 0.079 44 Tabebuia rosea DC. 0.058 0.034 0.009 0.043 0.02 0.074 45 Artocarpus integrifolia Linn. f. 0.058 0.032 0.008 0.04 0.019 0.07 46 Alstonia scholaris (L.) R.Br. 0.081 0.029 0.008 0.037 0.017 0.064 47 Butea monosperma (Lam.) Taub. 0.056 0.026 0.007 0.033 0.016 0.057 48 Lannea coromandelica (Houtt.) Merr. 0.077 0.026 0.007 0.033 0.016 0.057	38		0.058	0.043		0.054	0.025	0.093
41 Ficus racemose L. 0.061 0.038 0.01 0.048 0.023 0.083 42 Grevillea robusta A.Cunn. ex R.Br. 0.058 0.037 0.01 0.047 0.022 0.082 43 Millingtonia hortensis L.f. 0.058 0.036 0.009 0.045 0.021 0.079 44 Tabebuia rosea DC. 0.058 0.034 0.009 0.043 0.02 0.074 45 Artocarpus integrifolia Linn. f. 0.058 0.032 0.008 0.04 0.019 0.07 46 Alstonia scholaris (L.) R.Br. 0.081 0.029 0.008 0.037 0.017 0.064 47 Butea monosperma (Lam.) Taub. 0.056 0.026 0.007 0.033 0.016 0.057 48 Lannea coromandelica (Houtt.) Merr. 0.077 0.026 0.007 0.033 0.016 0.057	39	Albizia amara (Roxb.) Boiv.	0.058	0.042	0.011	0.053	0.025	0.092
41 Ficus racemose L. 0.061 0.038 0.01 0.048 0.023 0.083 42 Grevillea robusta A.Cunn. ex R.Br. 0.058 0.037 0.01 0.047 0.022 0.082 43 Millingtonia hortensis L.f. 0.058 0.036 0.009 0.045 0.021 0.079 44 Tabebuia rosea DC. 0.058 0.034 0.009 0.043 0.02 0.074 45 Artocarpus integrifolia Linn. f. 0.058 0.032 0.008 0.04 0.019 0.07 46 Alstonia scholaris (L.) R.Br. 0.081 0.029 0.008 0.037 0.017 0.064 47 Butea monosperma (Lam.) Taub. 0.056 0.026 0.007 0.033 0.016 0.057 48 Lannea coromandelica (Houtt.) Merr. 0.077 0.026 0.007 0.033 0.016 0.057	40	Monoon longifolium Sonn. B.Xue & R.M.K.Saunders	0.058	0.04	0.01	0.05	0.024	0.087
42Grevillea robusta A.Cunn. ex R.Br.0.0580.0370.010.0470.0220.08243Millingtonia hortensis L.f.0.0580.0360.0090.0450.0210.07944Tabebuia rosea DC.0.0580.0340.0090.0430.020.07445Artocarpus integrifolia Linn. f.0.0580.0320.0080.040.0190.0746Alstonia scholaris (L.) R.Br.0.0810.0290.0080.0370.0170.06447Butea monosperma (Lam.) Taub.0.0560.0260.0070.0330.0160.05748Lannea coromandelica (Houtt.) Merr.0.0770.0260.0070.0330.0160.057	41		0.061	0.038	0.01	0.048	0.023	0.083
43 Millingtonia hortensis L.f. 0.058 0.036 0.009 0.045 0.021 0.079 44 Tabebuia rosea DC. 0.058 0.034 0.009 0.043 0.02 0.074 45 Artocarpus integrifolia Linn. f. 0.058 0.032 0.008 0.04 0.019 0.07 46 Alstonia scholaris (L.) R.Br. 0.081 0.029 0.008 0.037 0.017 0.064 47 Butea monosperma (Lam.) Taub. 0.056 0.026 0.007 0.033 0.016 0.057 48 Lannea coromandelica (Houtt.) Merr. 0.077 0.026 0.007 0.033 0.016 0.057	42	Grevillea robusta A.Cunn. ex R.Br.						0.082
44Tabebuia rosea DC.0.0580.0340.0090.0430.020.07445Artocarpus integrifolia Linn. f.0.0580.0320.0080.040.0190.0746Alstonia scholaris (L.) R.Br.0.0810.0290.0080.0370.0170.06447Butea monosperma (Lam.) Taub.0.0560.0260.0070.0330.0160.05748Lannea coromandelica (Houtt.) Merr.0.0770.0260.0070.0330.0160.057								0.079
45Artocarpus integrifolia Linn. f.0.0580.0320.0080.040.0190.0746Alstonia scholaris (L.) R.Br.0.0810.0290.0080.0370.0170.06447Butea monosperma (Lam.) Taub.0.0560.0260.0070.0330.0160.05748Lannea coromandelica (Houtt.) Merr.0.0770.0260.0070.0330.0160.057		0						0.074
46 Alstonia scholaris (L.) R.Br. 0.081 0.029 0.008 0.037 0.017 0.064 47 Butea monosperma (Lam.) Taub. 0.056 0.026 0.007 0.033 0.016 0.057 48 Lannea coromandelica (Houtt.) Merr. 0.077 0.026 0.007 0.033 0.016 0.057								
47Butea monosperma (Lam.) Taub.0.0560.0260.0070.0330.0160.05748Lannea coromandelica (Houtt.) Merr.0.0770.0260.0070.0330.0160.057								0.064
48 Lannea coromandelica (Houtt.) Merr. 0.077 0.026 0.007 0.033 0.016 0.057								
								0.057
	49	Tamarindus indica L.	0.024	0.018	0.005	0.023	0.011	0.039

Fig. 1 : Top ten species holding highest biomass (tons) AND CO₂

CONCLUSION

The Kamareddy municipality area road side standing trees are holding less carbon stocks and $\rm CO_2$ sequestration

potential. In the study area the highest carbon stock and CO_2 were holding the *Azadirachta indica*A.Juss. That means Kamareddy area is suitable for Neem tree. Tree species

belongs to the Fabaceae family also abundant, so we recommend the tree species holding highest volume, biomass, carbon and CO₂ sequestration potential they are *Azadirachta indica* A.Juss., *Delonix regia* (Boj. ex Hook.) Raf., *Eucalyptus camaldulensis* Dehnh., *Dalbergia sissoo* Roxb., *Terminalia catappa* L., *Ficus benghalensis* L., *Senna siamea*(Lam.) Irwin et Barneby, *Albezia lebbek* (L.) Benth., *Samanea saman*(Jacq.) Merr., *Peltophorum pterocarpacum* (DC.) K. Heyneand Ficus religiosa L.

REFERENCES

- IPCC. Climate change 2014: synthesis report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team. Pachauri RK, Meyer LA, editors. Geneva, Switzerland: IPCC; 2014. 151p.
- World Bank Report. (2018). Available from: https://data. worldbank.org/indicator/EN.ATM.CO₂.KT.
- Chapin, F.; Matson, P. and Mooney, H. (2002). Principles of terrestrial ecosystem ecology. Springer, New York.
- Haripriya, G.S. (2002). Biomass carbon of truncated diameter classes in Indian forests. *Forest Ecology and Management*, 168: 1-13.
- Hooijer, A.; Page, S.; Canadell, J.G.; Silvius, M.; Kwadijk, J.; Wösten, H. and Jauhiainen, J. (2010) Current and future CO2 emissions from drained peatlands in Southeast Asia. *Biogeosciences*, 7: 1505-1514.
- Solanki, H.K.; Ahamed, F. and Gupta, S.K. (2006). Sport in urban India: its implications on health. *Indian J Commun Med.* 41(1): 16–22.
- BRSI. BRSI. (2015-16). Basic Road Statistics of India 2015– 16. Ministry of Road Transport and Highways.
- IBEF (2019). Roads. India Brand Equity Foundation.
- World Health Organization. Framework for linkages between health, environment and development. 2002.
- Rahman, M.H.; Arslan, M.I. and Chen, Y. (2003). Polycyclic aromatic hydrocarbon-DNA adducts among rickshaw drivers in Dhaka City. *Int Arch Occup Environ Health*. 76(7): 533–538.
- Kramer, U.; Sugiri, D. and Ranft, U. (2009). Eczema, respiratory allergies and traffic-related air pollution in birth cohorts from small-town areas. *J Dermatol Sci.* 56(2): 99–105.
- Montnemery, P.; Popovic, M. and Andersson, M. (2003). Influence of heavy traffic, city dwelling and socioeconomic status on nasal symptoms assessed in a postal population survey. *Respir Med.*, 97(8): 970–977.
- Seo S.N. and Mendelsohn, R. (2008). An analysis of crop choice: adapting to climate change in Latin American farms. *Ecol Econ.* 67(1):109–116.
- Money, C. (2015). Scientists discover that the world contains dramatically more trees than previously thought. The Washington Post.
- Akhtar, J.; Saqib, Z.A. and Qureshi, R.H. (2008). The effect of spacing on the growth of *E. camaldulensis* on salt

affected soils of the Punjab, Pakistan. *Can J for Res.* 38(9): 2434–2444.

- Zahabu, E.; Raphael, T. and Chamshama, S.A.O. (2015). Effect of spacing regime on growth, yield and hard wood properties of *Tectona grandis* at Conguza forest plantation Tanzania. *Int J Forest Res*: 1–6.
- Referowska-Chodak, E. (2019). Pressure and threats to nature related to human activities in European Urban and suburban forests. *Forests*: 10(9):765.
- Anil Ragula and Krishna, K.C. (2020). Tree species suitable for roadside afforestation and carbon sequestration in Bilaspur, India, *Carbon Management*, DOI: 10.1080/17583004.2020.1790243.
- Hutyra, L.R.; Yoon, B. and Alberti, M. (2011). Terrestrial carbon stocks across a gradient of urbanization: a study of the Seattle, WA region. *Glob Chang Biol*: 17(2): 783–797.
- Tang, Y.J.; Chen, A.P. and Zhao, S.Q. (2016). Carbon Storage and sequestration of urban street trees in Beijing. Front *Ecol. Evol.*, 4: 53.
- Khanal, Y.; Sharma, R.P. and Upadhyaya, C.P. (1970). Soil and vegetation carbon pools in two community forests of Palpa district Nepal. *Banko*: 20(2): 34–40.
- Forest Survey of India. Volume equation for forests ofIndia, Nepal and Bhutan. FSI, MOEF, Dehradun, India;1996.
- Rajput, S.S.; Shukla, N.K.; Gupta, V.K. and Jain, J.D. (1996). Timber mechanics: strength classification and grading of timber. Publication No. ICFRE-38, Indian Council of Forestry Research and Education, Dehradun, 189.
- Limaye, V.D. and Sen, B.R. (1956). Indian Forest Records: Timber Mechanics. Manager of Public-ations, Delhi.
- Reyes, G.; Brown, S.; Chapman, J. *et al.* (1992). Wood densities of tropical trees species. New Orleans, LA: US Department of Agriculture Forest Service.
- Mani, S. and Parthasarathy, N. (2007). Above ground biomassequation in ten tropical dry evergreen forest sites of Peninsular India. *Biomass Energy*: 31(5): 284– 290.
- Eggleston, H.S.; Buendia, L. and Miwa, K. (2006). Guidelines fornational greenhouse gas inventories. Hayama, Japan: IPCC National Greenhouse Gas Inventories Programme; 2006.
- Chandra, K.K. and Bhardwaj, A.K. (2018). Growth, biomass and carbon sequestration by trees in nutrient-deficient Bhataland soil of Bilaspur, Chhattisgarh, India. In: Singh VP, Yadav S, Yadava R, editor. Energy and environment, water science and technology library. Vol. 80. Singapore: Springer Nature Singapore Pte Ltd; 39– 45.
- Kanime, N.; Kaushal, R. and Tewari, S.K. (2013). Biomass productionand carbon sequestration in different treebased systems of Central Himalayan Tarai region. *Forest Trees Livelihoods*: 22(1): 38–50.