

ABSTRACT

Plant Archives

Journal homepage: http://www.plantarchives.org DOI Url : https://doi.org/10.51470/PLANTARCHIVES.2021.v21.no2.095

BIOCHEMICAL AND PHYSIOLOGICAL RESPONSES OF SUGARCANE CULTIVARS AGAINST WATER DEFICIT STRESS

Shoukat Jabeen¹, Thangadurai Devarajan^{1,*}, Rayappa B. Khandagave², Rakesh Tawadare¹, Maruti Ambiger¹, Ravichandra Hospet¹ and Abhishek Mundaragi³

> ¹Department of Botany, Karnataka University, Dharwad, Karnataka, India ²S. Nijalingappa Sugar Institute, Belagavi, Karnataka, India ³Department of Microbiology, Davangere University, Davangere, Karnataka, India

(Date of Receiving : 04-05-2021; Date of Acceptance : 13-08-2021)

Sugarcane is one of the extremely important crops grown in tropical and subtropical areas. Water deficit stress is the major problem affecting the yield, millable quality and sucrose content of the crop. The objective of the present study is solely based on the impact of lack of water on physiological changes of twenty-three genotypes of sugarcane at various stages of its growth. Water stress was imposed by withholding irrigation after 60 days of normal growth. SPAD index, photosynthetic pigment such as chlorophyll a, chlorophyll b, and total chlorophyll, relative water content and water retention capacity was calculated at different time intervals of water deficiency (T1, T2) which were designated as moderate and severe water stress and they were analyzed in the leaves followed by the relief, of water deficit stress (T3). As a result, seven genotypes (Co 09004, Co 14011, Co 95020, Co 08020, Co 85019, Co 05001, and Co 671) significantly showed higher SPAD index, photosynthetic pigment such as chlorophyll a, chlorophyll b and total chlorophyll content, relative water content and water retention capacity, which might be due to their tolerance to water deficiency. Through these physiological parameters, PCA based cluster analysis was further carried out to ascertain those sugarcane genotypes which are resistant to water deficient conditions.

Keywords: Chlorophyll content, Relative water content, SPAD index, Sugarcane, Water deficit stress, Water retention capacity

INTRODUCTION

Sugarcane of genus Saccharum is the most important crop worldwide which is distributed in tropical and subtropical regions of the world. It plays a major role in the economy of many countries. Sugarcane is mainly grown for sugar production all over the world. The biomass obtained from it is used as a source of bioethanol (Jangpromma et al., 2012). Water deficit stress is the major abiotic stress caused due to climatic change. When this stress reaches a certain extent, it damages the physiological status of crop, directly affecting the growth rate and development of the crop which in turn affects the biomass production (Graca et al., 2010; Medeiros et al., 2013; Zhao et al., 2013). Generally, severe stress in early and mid-growth stages leads to the reduction of cane yield which affects the crop quality by lowering the sugar yield. However moderate stress during the late growth stages may aid the crop to improve the sucrose content of the stalk. Thereby the effect of drought directly depends upon the degree and duration of stress (Zhao & Li, 2015). An increase in temperature and water stress both are in combination with each other hence chlorophyll fluorescence (Fv/Fm ratio) acts as quantitative measures to the photochemical efficiency of the PSII complex reported by (Kohila & Gomati, 2018). Certain modification such as reduced leaf water potential, relative water content, gas exchange, and photosynthesis was

seen in plants with water deficit stress (Medeiros *et al.*, 2013). Through different adaptive mechanism and reorganization of certain metabolic pathway plants conserve water for later use, to repair the damage caused by stress, which permit them to increase the overall yield of the crop (Vankova *et al.*, 2012). Shortage of water leads to negative effect on physiological and biochemical aspect that was verified from all parts of the plant identified by (Silva *et al.*, 2013).

According to Toppa *et al.* (2010) reduction in temperature, moderate drought and nitrogen content present in the soil play an important role in the maturation of crop, this process involves complex metabolic pathway begin with the photosynthetic capacity in the chloroplast of the leaf, and ends with accumulation of carbohydrates in the stem (Fernanda *et al.*, 2018).

MATERIALS AND METHODS

In the present study twenty-three genotypes of sugarcane were grown in Yargatti Farm of S. Niglingappa Sugarcane Institute, Belagavi, Karnataka, India. The seeds were sowed in February 2019. With a plot size $1.2 \text{ cm} \times 6 \text{ m} \times 6$ line, twenty-three varieties were grown with 1.2 cm distance between the rows and the auto whether unit was installed to measure the climatic parameters during the crop season,

through this rainfall and air temperature was measured. Twenty three Genotypes of sugarcane include Co 09004, Co 14011, Co 0303, Co 13003, Co 98017, Co 95020, Co 93009, Co 92013, Co 12007, Co 07015, Co 08020, Co 85019, Co 86032, Co 90003, Co 13006, Co 92002, Co 06015, Co 92020, Co 94005, Co 98008, Co 05001, and Co 10033, Co 671.The plants were under treatment from 60-120 days of their growing period followed by irrigation. Data was recorded at 60^{th} day considering the reading as plants under controlled conditions further there was water stress induced from 60-120 days of planting and similar observations was made followed by relief of water stress, and data was documented on 150th day of planting. Frequent field visit was done for data analysis and interpretation during the month of February to December.

About 10 feet distance the plants were selected to record data at different time intervals where 60 days as (control-T₀), 90 days (T₁), 120 days (T2) and 150 days (T3). The important traits such as chlorophyll 'a', chlorophyll 'b', Total chlorophyll, SPAD reading relative water content and water retention capacity were considered to estimate the tolerant varieties of sugarcane. Pearson correlation coefficient (Table 2) analysis was carried out for the correlation between various traits (Alemu *et al.*, 2018; Jakhar & Kumar, 2018; Ambiger *et al.*, 2019). Figure 2 depicts the study of the gradual change among the various sugarcane varieties. PCA was carried out to substantiate the relation between photosynthetic pigments, SPAD index, RWC and WRC. Dendrogram analysis was done with grouping pattern of various sugarcane varieties resulting in two main clusters.

Measuring chlorophyll content via SPAD index

The estimation of chlorophyll content was determined using a SPAD chlorophyll meter and an average of three reading in leaf +2 of each plant were used and SPAD index was calculated.

Pigment content analysis

Chlorophyll a (Chl a), chlorophyll b (Chl b) and total chlorophyll (Totchl) concentration were analyzed following the method of (Hiscox & Israelstam, 1979; Anamiel *et al.*, 2018). The processed sampled was analyzed at optical density of 663 and 645 nm. The chlorophyll 'a', chlorophyll 'b' and total chlorophyll content was computed with standard formula as follows

Chlorophyll 'a' = $(12.7 \times A663) - (2.69 \times A645) \times (v/1000 \times W)$ Chlorophyll 'b' = $(22.9 \times A645) - (4.68 \times A663) \times (v/1000 \times W)$ Total chlorophyll = $(20.2 \times A645) + (8.02 \times A663) \times (v/1000 \times W)$

Relative water content (RWC)

Fresh weight (FW) of the sample was measured immediately after cutting, turgid weight was obtained by immersing the leaf in deionized water for 24h and subsequently, dry weight was measured by drying the leaf in a preheated oven at 80° for 48 h. relative water content was calculated by using the formula according to (Medeiros *et al.*, 2013) and WRC was calculated using the formula suggested by (Tetsushi & Karim, 2007).

 $RWC = FW - DW/TW - DW \times 100$

WRC = Turgid/Dry weight

RESULTS AND DISCUSSION

Biochemical and physiological characterization

Generally, sugarcane yield depends on mainly some of the important physiology characters such as chlorophyll a, chlorophyll b, total chlorophyll, SPAD index, relative water content, and water retention capacity. Table 1 depicts the same and was recorded for different time intervals at T_0 (60) days) T_1 (90 days), T_2 (120 days) and T_3 (150 days) respectively. Under water deficit stress genotypes Co 671 and Co 09004 resistance to stress showed higher value of chlorophyll 'a' content at T_0 and reduction was seen at T_1 in genotypes Co 671 (1.89 mg g^{-1} FW), and Co 09004 (1.86 mg g^{-1} FW) and at T₂ in Co 09004 (1.63 mg g^{-1} FW) and Co 671 (1.65 mg g^{-1} FW). Whereas genotypes Co 98017 and Co 07015 which were susceptible to stress showed reduction in chlorophyll content at T_0 followed by decrease at T_1 and T_2 found in genotypes Co 98017 (1.68 mg g⁻¹ FW) and Co 06015 (1.66 mg g⁻¹ FW), (1.55 mg g⁻¹ FW) and Co 07015 (1.46 mg g⁻¹ FW).Similar observation were recorded with chlorophyll 'b' content and thus the genotypes Co 671 and Co 09004 were resistant to stress showed higher chlorophyll 'b' values at T_0 and the reduction was observed at T_1 in genotype Co 671 (0.35 mg g⁻¹ FW), Co 09004 (0.34 mg g⁻¹ FW) and at T_2 in genotypes Co 09004 (0.14mg g⁻¹ FW), Co 671 (0.20 mg g⁻¹ FW) was noticed. Whereas, genotypes Co 98017 and Co 06015 which were susceptible to stress showed low levels of chlorophyll content at T₀. Further reduction was seen at T_1 and T_2 in the genotypes Co 98017 $(0.105 \text{ mg g}^{-1} \text{ FW})$, Co 06015 $(0.031 \text{ mg g}^{-1} \text{ FW})$ and at T₂ in genotypes Co 98017 (0.045 mg g⁻¹ FW), Co 06015 (0.016 mg g^{-1} FW). Higher level of total chlorophyll was observed at T₀ in genotypes Co 671 and Co 09004, Further decrease in Total chlorophyll was seen at T₁ and T₂ in genotypes Co 671 (2.252 mg g^{-1} FW), Co 09004 (2.212 mg g^{-1} FW) and Co 09004 (1.746 mg g⁻¹ FW), Co 671 (1.699 mg g⁻¹ FW) respectively. The genotypes Co 98017 and Co 06015 were susceptible to stress had great reduction in Total chlorophyll at T_0 . Later at T_1 and T_2 , the genotypes Co 98017 (1.792 mg g^{-1} FW), Co 06015 (1.694 mg g^{-1} FW) and Co 98017 (1.622 mg g^{-1} FW), Co 06015 (1.325 mg g^{-1} FW) shows reduction in total chlorophyll. SPAD index was higher in genotypes resistant to stress at T_0 further reduction was observed at T_1 in genotypes Co 671 (40.270 mg g⁻¹ FW), Co 09004 (39.850 mg g^{-1} FW) and with a slight increase at T₂, inCo 671 (41.850 mg g⁻¹ FW), Co 09004 (35.340 mg g⁻¹ FW) respectively. Greater reduction in SPAD index was seen at T₁ and T_2 in genotypes Co 98017 (35.50 mg g⁻¹ FW), Co 06015 (37.35 mg g⁻¹ FW) and Co 98017 (33.45 mg g⁻¹ FW), Co 06015 (32.47 mg g⁻¹ FW) respectively. The RWC and WRC value was higher in genotypes Co 671 and Co 09004 and lowest in genotypes Co 06015 and Co 98017 respectively. According to the results loss of chlorophyll is linked with water deficit thus change in the chlorophyll content and SPAD index was used to assess the consequence of stress on sugarcane. Further the genotypes such as Co 09004 and Co 671 which were tolerant to stress showed higher chlorophyll content. Hence, reduction in chlorophyll content and SPAD was found in genotypes Co 98017 and Co 06015. Similar observation recorded by (Kohila & Gomati, 2018; Medeiros et al., 2013).

Pearson correlation coefficient analysis

Physiological effect under control (T_0) , water stress (T_1) and T₂) and stress relief (T₃) was studied and the Pearson correlation coefficient analysis (Table 2) indicated that water retention capacity at (T1 and T2) was negatively correlated with chlorophyll content (r = -0.012, -0.007, -0.063), SPAD (r = -0.116, -0.062, -0.046, -0.245) and RWC (r = -0.180). The plants which are susceptible to water stress have lesser chlorophyll content and RWC. Whereas Relative water content was significantly positively correlated to chlorophyll content (r = 0.656^{**} , 0.699^{**} , 0.624^{**} , 0.681^{**} respectively), SPAD ($r = 0.632^{**}$, 0.631^{**} , 0.626^{**} , 0.540^{**} , 0.584^{**}). A study by Surendar et al. (2013) on ratoon crop of banana shows similar results where two subplot treatments S1 and S2 showed highest RWC value as S1 (81.1) and S2 (80.4%). Hence RWC was highly correlated with yield. Similarly, SPAD value was also highly significantly correlated with chlorophyll $r = 0.694^{**}, 0.531^{**}, 0.699^{**}, 0.759^{**}$ respectively. However similar results were seen Jangpromma et al. (2010) observed that significant reduction in chlorophyll content and SPAD reading, thus according to their findings reduction in the chlorophyll content was greater compared to SPAD index. Silva et al. (2018) also reported reduction in SPAD index during different time interval and the largest decrease in SPAD index was seen in variety RB855453.In addition to this reduction was also seen in RWC and chlorophyll content of plants. Variation in the chlorophyll content in sugarcane during drought was identified (Cha-um & Kirdmanee, 2009). According to Silva et al. (2007) the susceptible genotypes showed a great reduction in the SPAD chlorophyll meter reading values. Zhao et al. (2015) suggested chlorophyll content of the sugarcane leaf also plays an important role in identifying the stress tolerant varieties.

Principal component analysis

Among the twenty-four traits of sugarcane, PCA (Table 3) provides three principal components with the cumulative variance accounted for 83.369%. The resultant PC1 and PC2 together contributed to 75.02% whereas 73.47% of variance was contributed by PC1 and PC3. Thus, it is clear from PC1 that total chlorophyll at T₁, chlorophyll 'b' at T₁ were found to be most effective variable contributing 0.985 and 0.973% respectively whereas water retention capacity at T4 with 0.897% was better explained by PC2. Similarly, water retention capacity at T_2 (0.759%) and water retention capacity T_1 (0.590%) were most effective variables of PC3. According to Kohila & Gomati, (2018) biochemical characterization was undertaken with 5 sugarcane genotypes and two S. Spontaneum spp. under heat stress the genotypes which were tolerant to stress maintained high RWC and chlorophyll content while sensitive genotypes decrease in RWC chlorophyll content with a cumulative percentage of PC1 and PC2 as 95.5%.

It is clear from scree plot of principal component analysis the first three components showed more than one Eigen values hence there are well demonstrated whereas the component 4-24 indicates eigen values less than 1 thus they do not secure more importance (Fig. 1).

The genotype I and IV were having the lowest dissimilarity index which is equal to 17.148. Followed by 9.575 as the lowest dissimilarity for genotype II and genotype V. Successively it was 14.218 with respect to genotype III and VII respectively. Thus, these genotypes were found to be resistant towards water deficit stress (Table 4).

Cluster analysis of twenty-three sugarcane varieties

On the basis of twenty-four physiological characters, the genetic distance of twenty-three sugarcane varieties and prominent traits were predicted. The dendrogram analysis (Fig. 2) indicates two main clusters at 7% and 8% level of the cut made into seven genotypes of sugarcane varieties namely, Co 14011, Co 08020, Co 85019, Co 09004, Co 95020, Co 671 and Co 05001 respectively. Further, these two clusters classified at less than 5% level of the point made into the sub cluster are also named as groups. The first group (G1) is considered as cluster classified at 4% level varieties of sugarcane viz Co 0303, Co 92013, and Co 90003, Co12007, Co 94005 these five lines revealed 22% of total varieties. The second group G2 made at 3% level classify the sugarcane varieties and were grouped with five genotypes with 22% having Co 93009, Co 98008, Co 10033, Co 13003, Co 86032.Followed by that of third group (G3) was classified at 3% level exhibiting six lines with 26%, sugarcane varieties having genotypes Co 98017, Co 92020, C0 07015, Co 13006, Co 92002, and Co 06015. Finally, the fourth group (G4) classified at the 7% level have seven genotypes viz., Co 14011, Co 08020, Co 85019, Co 09004, Co 95020, Co 671, Co 05001 with 30% of the total respectively. A study on screening of sugarcane for salt tolerance Cha-um et al. (2013) reported through cluster analysis that '(A3) AE1-11' and 'KK3' were salt tolerant cultivars.

CONCLUSION

When the plants are subjected to water stress mainly the photosynthetic pigments are been affected as a result of it usually reduction in chlorophyll content such as chlorophyll a/b and total chlorophyll and relative water content. The varieties of sugarcane which were tolerant to stress, Co 09004, Co 14011, Co 95020, Co 08020, Co 85019, Co 05001, and Co 671 alter their development to water deficit stress and showed a greater recovery after rewatering when compared to Co 98017, Co 07015, Co 92020, Co 13006, Co 92002, Co 06015 which showed susceptibility. As a result, by having two different groups as depicted in the cluster analysis with respect to (G3 and G4) it could clearly indicate that the plants which were susceptible to stress had no recovery after rewatering and were clustered in a different group. Thus, based on the experimental results these significant variations of diverse characters of different groups are helpful for a future breeding programme.

Cold Cold <th< th=""></th<>
6.0781.13052.13682.4414.83003.53003.53002.02.881.48,79361.147651.23551.03331.5461
60792.2001.85182.460147.050040.170040.140041.710029.65571146.4602100.964117.6818211.958711.951815.79115.1931382.71012.252416.9092.555549.450049.250038.4400180.6084145.771188.7324170.28111.65831.57031.59131.59131.59131.59131.59131.59131.59131.59131.59101.59131.59101.59131.59101.59131.59101.59131.59101.59131.59101.59131.59101.5913 </td
77102.2541.6902.55549.450040.270041.850043.450026.8871148.618886.2857183.58211.21811.54031.51931.388.29201.9161.60902.153240.270036.250032.380038.4400180.6084145.771188.732470.28111.63331.62231.57011207.23351.90161.63092.151940.350034.330028.550036.550036.550036.550036.5500145.057149.071.684681.41431.49071.77242.490.24911.63072.151641.050034.320030.480037.550037.550017.955618.3524169.15581.80772.4931.80771.77242.490.24911.92091.93072.155841.050035.550030.480037.550017.1935133.852497.8610169.15581.80771.77242.490.24911.99762.158841.50035.550030.490034.50017.1935135.82483.5294169.15581.80771.79242.490.24911.99762.15841.050035.550030.490038.550019.05711287398.3581.80771.56671.56671.66671.66671.66671.6667.24911.99761.57782.15841.050035.550030.400038.5500190.375041.57781.57261.44021.56671.76121.7612.2491
1.9301.63972.106140.950034.450028.550036.7500175.7962133.862497.8610168.64861.41431.49071.52271.4102.4331.86772.155031.550030.480077.570677.5705133.862497.8610168.30772.43381.80771.79242.4902.40101.90201.90732.155031.550030.480077.570077.5702133.862497.8610168.30772.43381.80771.79242.4902.4111.9481.57882.156341.050035.550030.910038.450017.9505135.8621190.375192.355898.1818164.66881.96671.50231.49071.50232.4111.9481.57882.15632.156341.050035.550030.910038.450019.0377128.732998.1818164.66881.96671.50231.49152.17412.4111.99052.15632.156341.050035.550030.550031.550019.94925120.114982.2222152.77781.95022.99522.99522.99521.76152.37541.76562.4111.791637.550035.50035.50035.50035.500155.231127.47288.0866154.05761.56371.95022.99522.99521.77152.4121.791637.50035.50035.50035.50035.50035.500155.232127.47288.0866154.0371.97261
.2.4331.80281.59702.155041.650035.550030.480037.650017.935133.862497.8610168.30772.43381.80771.79242.490.4001.92061.59732.225841.250034.820037.4900171.9355133.882483.5294169.15581.89861.66671.66671.66771.892.41011.91261.575034.820037.490037.550030.910038.4500185.8621193.25898.1818164.66881.93311.65201.40152.124.42171.90251.56352.176840.840035.550030.910038.4500189.4925128.795894.2122162.65561.52771.95022.49521.601.34881.89681.59462.198541.190035.550030.550030.5500188.430188.735994.2122162.65561.52771.95022.49521.601.34881.89681.59462.15871.871035.50030.550030.5500188.430185.04113734984.51181.55031.79422.37781.56321.49121.5532.34801.77611.57631.871038.510035.50030.5200158.031158.733484.5118146.66671.13961.79422.37141.5653.34801.77611.56381.879138.510033.550035.5201158.733484.5118146.66671.13961.79421.313.3491
4000 1.5073 2.2258 41.2500 34.800 31.2500 37.4900 171.9355 135.8324 83.5294 169.1558 1.8968 1.6667 1.667 1.667 1.667 1.667 1.667 1.667 1.667 1.6913 2771 1.5753 1.5636 1.5760 35.500 35.500 36.4200 158.045 12.1012 1.7573 1.8763 1.9763 1.8763 1.9763 1.8763 1.8763 1.84667 1.7178 1.5753 1.2763 1.3469 1.4163 1.46667 1.1473 3450 1.7727 1.87791 1.873349
4217 1.9488 1.5788 2.2163 41.0500 35.5500 30.9100 38.4500 19.337 13.93258 98.1818 164.6688 1.9831 1.6520 1.4015 2.143 2974 1.9025 1.5635 2.1768 40.8400 35.7500 31.8500 32.5500 31.8500 32.5500 31.8500 32.5500 31.8500 32.5500 37.5500 37.5500 191.0377 128.7958 152.7778 1.5026 1.5945 1.601 3488 1.8968 1.5946 2.1985 41.1900 35.5500 30.5800 37.5500 38.4200 188.4925 120.1149 82.2222 152.7778 1.5069 1.7945 1.5753 351 1.5727 1.8710 35.5000 30.5800 35.5201 155.241 133.7349 84.5118 146.6667 1.7975 1.4712 1.473 3610 35.500 35.500 35.5201 155.241 133.7349 84.5118 146.6667 1.7511 2.7549 1.1473 3610
974 1.9025 1.5635 2.1768 40.8400 35.7500 31.8500 38.2500 191.0377 128.7958 94.2122 162.6556 1.5287 1.9502 2.4952 1.601 5488 1.8908 1.5946 2.1985 41.1900 35.5000 37.5500 198.4925 120.1149 82.2222 153.076 1.7945 1.565 5571 1.7926 1.6028 1.8710 35.5000 35.5000 35.5200 158.0247 157.4725 88.0866 154.0373 1.2765 1.8426 2.3512 1.275 5610 1.7726 35.5000 35.5000 35.5200 35.5200 35.5201 158.0247 127.4725 88.0866 154.0373 1.2765 1.8426 1.3717 5610 1.7571 1.8710 38.5100 34.500 35.5200 35.5200 35.5200 35.5203 35.5203 35.5204 158.0467 1.3916 1.747 1.448 51.771 1.5528 1.87142 81.8506 1.45.9474 1.4492
44881.89681.59462.198541.190035.500030.580037.5500188.4925120.114982.2222155.77781.52031.79452.03741.56357711.79261.871037.530035.500033.450036.4200158.0247127.472588.0866154.03731.27651.84262.35121.27588101.72171.57271.871038.510034.550035.520035.5200155.2941133.734984.5118146.66671.13961.75112.54691.14794951.72771.56381.8571038.580035.560035.520035.5201155.2941133.734984.5118146.66671.13961.75112.54691.14794951.72771.56381.8571038.580035.5600155.2921152.142981.8182148.94741.44921.54471.81321.44894961.72171.50201.884339.090034.150035.5600165.0718134.965090.4348139.56041.44561.58831.30101.33494981.74161.877939.530034.550037.550035.5604165.7472083.56041.44561.58831.30101.33494081.74161.877939.530034.550037.5500165.54771.677201.44561.58831.30101.34741.51471.33394181.44061.877939.530034.560035.5600165.54771.67720
0577 1.7926 1.6228 1.8700 37.500 33.4500 36.4200 158.0247 127.4725 88.0866 154.0373 1.2765 1.8426 2.3512 1.275 0810 1.7721 1.8710 38.5100 34.5500 36.4200 158.0241 133.7349 84.5118 146.6667 1.1396 1.7511 2.5469 1.147 0495 1.7277 1.5638 1.8501 38.5500 33.4600 36.5503 155.2632 122.1429 81.8182 148.9474 1.4992 1.5447 1.418 1.448 0495 1.7217 1.5638 1.8500 33.4600 36.5500 155.2632 122.1429 81.8182 148.9474 1.4492 1.5447 1.8132 1.448 0490 1.7712 1.5020 34.1500 35.5600 35.5604 1.5475 1.8132 1.448 1.3934 1.3147 1.8132 1.3414 1.3333 0490 1.4770 35.5014 1.46.7290 90.4348 139.5604 1.4456 1.
0.810 1.7721 1.8710 38.5100 34.5500 36.5200 155.2941 133.7349 84.5118 146.6667 1.1396 1.7511 2.5469 1.147 0.495 1.7277 1.5638 1.8501 38.5800 35.4600 36.5200 35.5232 122.1429 81.8182 148.9474 1.4902 1.5447 1.8132 1.448 0.499 1.7212 1.5020 38.5800 35.5600 35.5600 35.560 165.0718 134.9650 90.4348 139.5604 1.4456 1.8132 1.349 0.493 1.7406 1.8843 39.0900 34.1500 38.5800 165.0718 134.9650 90.4348 139.5604 1.4456 1.5812 1.349 0.448 1.4904 1.8779 39.5300 34.5500 37.5500 37.5409 1.5132 0.48 1.407290 8.53714 142.5926 1.5147 1.3334 1.5147 1.3334 0.48 1.5046 1.8881 39.3800 37.5500 157.7874 <t< td=""></t<>
.0495 1.7277 1.5638 1.8501 38.5800 33.4600 36.8500 155.2632 122.1429 81.8182 148.9474 1.4492 1.5447 1.8132 1.448 .0499 1.7212 1.5020 18.843 39.0900 34.1500 33.5600 38.5800 165.0718 134.9650 90.4348 139.5604 1.4495 1.3810 1.384 .0438 1.7416 1.8779 39.5300 34.5500 37.5500 167.5497 146.7290 83.5714 142.5926 1.307 1.3934 1.3147 1.333 .0438 1.7406 1.8779 39.5300 34.3500 37.5500 167.5497 1.8173 1.4456 1.3017 1.3934 1.3147 1.333 .0438 1.7406 1.8781 39.5300 37.3500 37.5500 154.7826 1.40.7296 1.3107 1.3934 1.5147 1.333 .0548 1.6942 1.8781 39.3500 154.7826 1.42.5926 1.3107 1.3934 1.5147 1.333
.0499 1.7212 1.5020 1.8843 39.0900 34.1500 33.5600 38.5800 165.0718 134.9650 90.4348 139.5604 1.4456 1.5885 1.3010 1.384 .0438 1.7406 1.4964 1.8779 39.5300 34.1500 34.5500 165.0718 134.5650 83.5714 142.5926 1.3077 1.334 1.3133 .0438 1.7406 1.4964 1.8779 39.5300 34.5300 37.5500 167.5497 146.7290 83.5714 142.5926 1.3107 1.3344 1.3147 1.333 .0366 1.6942 1.3553 1.8581 39.3800 32.4700 38.5900 154.7826 124.0310 78.7879 1.3100 1.4831 1.2472 1.701
.0438 1.7406 1.4964 1.8779 39.5300 34.3500 34.3500 37.6500 167.5497 146.7290 83.5714 142.5926 1.3107 1.3934 1.5147 1.333 .0366 1.6942 1.8581 39.3800 37.3500 38.5900 154.7826 124.0310 78.7879 125.2874 1.3100 1.4831 1.2472 1.701
.9366 1.6942 1.3255 1.8581 39.3800 37.3500 32.4700 38.5900 154.7826 124.0310 78.7879 125.2874 1.3100 1.4831 1.7016

Table 2 :	Pearson's	Correlation	coefficient	among	different	physiological	characters	studied	for	twenty-three	sugarcane
varieties of	Northern I	Karnataka in	India								

vai	ieties	of N	orthe	rn Ka	rnata	ka in	India																	
TRS	Α	В	С	D	Е	F	G	Н	Ι	J	K	L	М	Ν	0	Р	Q	R	S	Т	U	V	W	X
Α	1																							
В	.775**	1																						
С	.805**	.936**	1																					
D	.798**	.909**	.899**	1																				
Е	.713**	.894**	.849**	.881**	1																			
F	.817**	.859**	.939**	.900**	$.808^{**}$	1																		
G	.685**	.464*	$.479^{*}$	$.483^{*}$.365	.529**	1																	
Н	.792**	.881**	.868**	.827**	.901**	.841**	.342	1																
Ι	.908**	.908**	.895**	.911**	.941**	.877**	.549**	.920**	1															
J	.829**	.950**	.971**	.936**	.873**	.976**	$.520^{*}$.888**	.921**	1														
Κ	.793**	.808**	.880**	.741**	.726**	.830**	.528**	.776**	.816**	.850**	1													
L	.832**	.936**	.923**	.950**	.933**	.908**	.427*	.961**	.958**	.953**	.795**	1												
М	.835**	.813**	.835**	.817**	.770**	.863**	.535**	.882**	.862**	.873**	.720**	.890**	1											
Ν	.694**	.699**	.759**	.707**	.636**	.852**	.452*	.734**	.715**	.818**	.617**	.754**	.854**	1										
0	.531**	.435*	.501*	.485*	.404	.629**	$.524^{*}$.472*	$.498^{*}$.569**	.452*	$.500^{*}$.654**	.822**	1									
Р	.769**	.638**	.703**	.699**	.596**	.772**	.536**	.725**	.727**	.743**	.547**	.746**	.928**	.842**	.729**	1								
Q	.748**	.759**	.837**	.885**	.748**	.874**	.464*	.741**	.808**	.857**	.773**	.846**	.800**	.757**	.606**	.737**	1							
R	.656**	.624**	.650**	.573**	.444*	.717**	.466*	.590**	.582**	.703**	.607**	.609**	.632**	.626**	$.505^{*}$.614**	.590**	1						
S	.699**	.681**	.748**	.683**	$.508^{*}$.750**	.287	.635**	.641**	.748**	.733**	.688**	.631**	.540**	.198	.530**	.641**	.560**	1					
Т	.807**	.878**	.902**	.876**	.812**	.862**	.523*	.829**	.875**	.900**	.870**	.890**	.739**	.584**	.339	.565**	.771**	.666**	.732**	1				
U	118	029	215	128	115	407	244	087	126	261	252	111	245	410	443*	278	369	189	162	052	1			
v	.523*	.600**	.677**	.673**	.492*	.699**	.204	$.509^{*}$.546**	.682**	.651**	.613**	.481*	$.500^{*}$.223	.359	.621**	.350	.818**	.645**	251	1		
W	012	.043	.109	.138	.030	.127	007	063	.012	.096	.257	.033	116	062	046	245	.111	180	.197	.180	258	.585**	1	
х	157	043	226	119	114	410	294	094	144	269	331	111	211	312	350	207	311	244	234	143	.948**	314	328	1
TDO	The last	A Chi	TO 2.	Ch1 - T	1 2.01	1 . T2	4.01.1	T2 5	CI-1 1. T	0 (.01	11. 11	7.0111	T1 0.	C1.1 1. 7	C2 0.T-	4-1 TO	10.T-+-	1 TT 1 1	1.77-4-1	TO 10.	T-4-1 T	2 12.01	AD T	0

TRS:Traits, A:Chla-T0, 2:Chl a-T1, 3:Chl a-T2, 4:Chl a-T3, 5:Chl b-T0, 6:Chl b-T1, 7:Chl b-T2, 8:Chl b-T3, 9:Total-T0, 10:Total-T1, 11:Total-T2, 12:Total-T3, 13:SPAD-TO, 14SPAD-T1, 15:SPAD-T2, 16:SPAD-T3, 17:RWC-T0, 18:RWC-T1, 19:RWC-T2, 20:RWC-T3, 21:WRC-T0, 22:XWRC-T1, 23:WRC-T2, 24:WRC-T3

Table 3 : Contribution of Twenty-four physiological traits to the total variation in the first three Principal Component Analysis of Twenty-three Genotypes.

Troito		Component	
Irans	PC-1	PC-2	PC-3
Chlorophyll a (T0)	.889	.102	089
Chlorophyll a (T1)	.919	.253	.106
Chlorophyll a (T2)	.957	.056	.114
Chlorophyll a (T3)	.931	.136	.124
Chlorophyll b (T0)	.863	.220	.077
Chlorophyll b (T1)	.973	146	.016
Chlorophyll b (T2)	.569	166	287
Chlorophyll b (T3)	.904	.237	022
Total chlorophyll (T0)	.944	.181	.002
Total chlorophyll (T1)	.985	.018	.055
Total chlorophyll (T2)	.871	069	.216
Total chlorophyll (T3)	.959	.198	.049
SPAD (T0)	.917	.047	249
SPAD (T1)	.836	177	315
SPAD (T2)	.614	330	520
SPAD (T3)	.805	026	451
Relative water content (T0)	.892	115	002
Relative water content (T1)	.707	019	235
Relative water content (T2)	.753	019	.357
Relative water content (T3)	.899	.165	.239
Water retention capacity (T0)	275	.906	.118
Water retention capacity (T1)	.669	210	.590
Water retention capacity (T2)	.080	441	.759
Water retention capacity (T3)	283	.897	008
Total	15.633	2.374	2.002
Percent of Variance	65.138	9.890	8.341
Cumulative percent	65.138	75.028	83.369

6	3		;	3						3												
3	=	≡	2	>	7	T		VI	V	N	IIV	IIIV	VIX	N	IVV	IIVX	IIIVX	VIV	W	W	IIVV	
) I	0.000 32.8	57 54.746	17.148	25.080) 30.667	67.199	39.120	22.652	83.318	86.941	84.855	88.267	93.982	78.720	77.199	80.426	111.247	115.678	117.595	108.473	05.229	27.704
Π	0.00	0 26.164	47.760	9.575	11.536	37.864	69.111	45.254	56.595	60.278	57.902	59.639	67.871	50.114	51.052	59.648	83.523	87.959	90.838	80.540	78.299	01.549
Ш		0.000	69.874	32.248	3 25.869	14.218	90.435	869.09	30.684	40.038	32.192	35.423	42.638	25.677	29.489	42.692	59.218	63.556	67.037	57.811	54.635	79.686
IV			0.000	40.421	1 44.802	82.860	26.708	29.287	98.164	99.639	99.507	102.534	108.379	92.943	90.502	868.16	124.975	129.452	130.973	121.780	19.087	40.261
Λ				0.000	11.306	44.200	61.033	36.785	61.961	64.835	63.584	65.417	72.671	55.977	55.307	61.625	88.788	93.397	95.579	86.058	83.721	06.160
Μ					0.000	39.216	65.314	40.043	55.106	58.584	56.515	59.148	66.066	49.037	48.410	54.598	81.816	86.104	88.623	78.636	76.042	98.867
ΠΛ						0.000	103.386	72.618	22.858	36.186	25.039	26.883	34.607	20.080	27.663	44.592	50.758	55.436	59.332	51.473	48.291	73.864
IIIA							0.000	37.635 1	117.358	118.653	118.867	122.448	127.159	112.331	108.793	106.826	142.909	146.584	147.876	138.131	35.072	54.562
IX								0.000	84.688	90.341	86.596	91.746	94.291	82.177	79.217	78.595	112.242	115.938	117.288	109.283	04.797	26.346
Х									0.000	29.691	5.158	16.153	14.379	13.916	22.070	36.511	33.513	37.051	41.372	36.228	31.150	57.146
IX										0.000	30.100	17.318	26.029	20.622	13.956	25.274	30.359	38.439	36.036	35.070	41.124	51.901
IIX											0.000	16.506	14.841	14.440	23.255	37.192	33.105	35.971	40.961	35.139	29.874	56.175
IIIX												0.000	15.061	12.099	17.565	34.524	26.186	32.991	34.820	31.916	33.500	52.630
XIX													0.000	21.033	23.969	34.998	23.126	28.315	29.860	31.373	29.290	48.944
XV														0.000	12.660	30.442	33.988	38.665	41.990	33.998	33.282	56.007
IVX															0.000	19.366	34.930	40.783	40.945	35.644	37.405	54.580
IIAX																0.000	41.840	45.924	43.633	39.952	42.307	52.030
IIIAX																	0.000	10.767	10.141	18.187	24.902	30.809
XIX																		0000	12.189	13.772	18.566	24.485
XX																			0000	20.682	28.321	24.132
IXX																				0000	14.365	24.010
IIXX																					0.000	31.731
IIIXX																						0.000
GP-Geno XIV:CO 9	types, I:CC 10003, XV:	0 09004, I CO 94005	I:CO 140	0086 C	CO 1300 3, XVII:C	3, IV:CG 20 1003) 95020, 3, XVIII:	V:CO 08 CO 9801	020, VI:C 7, XIX:C	20 85015 20 07015), VII:CC) 86032,) 92020,]	VIII:CO XXI:CO	05001, D 13006, X	XII:CO 671 XII:CO 9	, X:CO 0. 2002, XX	303, XI:(III:CO 0	50 93009 6015.	, XII:CO	92013, X	III:CO I	2007,

Fig. 1 : Scree plot analysis of Twenty-three sugarcane varieties using 24 traits

Table 4: Dissimilarity matrix of twenty-three varieties of sugarcane varieties of Northern Karnataka in India

Fig. 2 : Dendrogram using Average Linkage (between groups) of Twenty-three varieties using 24 parameters of sugarcane cultivars

Acknowledgements

First author SJ, wish to thank the Directorate of Minority, Government of Karnataka for providing financial assistance to carry out research work in the form of Minority Fellowship (DOM/FELLOWSHIP/CR-21/2018-19).

Compliance with ethical standards

The authors declare that there is no conflict of interest.

REFERENCES

- Alemu, S.; Mohammed, H. and Tadesse, F. (2018). Correlation of traits on Sugarcane (*Saccharum* spp) genotypes at Matahara Sugar Estate. *Int J Adv Res Biol Sci*, 5: 1-5.
- Ambiger, M.; Thangadurai, D. and Hospet, R. (2019). Germplasm collection and morphological characterrization of diversity among wild *Vigna* from Western Ghats and northern Karnataka in India. *Sci Papers Ser B Hortic*, 63: 651-661.
- Anamie, I.; Sanchez, V.; Carmel, M.; Villafranca, R. and Llanos, N.L. (2018). Estimation of chlorophyll content in local caulerpa seaweed using acetone, DMSO and methanol. *Res J Chem Sci.*, 8:1-5.
- Cha-um, S.; Chantawong, S.; Mongkolsiriwatana, C.; Ashraf, M. and Kirdmanee, C. (2013). Field screening of Sugarcane (*Saccharum* spp.) mutant and commercial genotypes for salt tolerance. *Not Bot Horti Agrobo*, 41: 286-293.
- Cha-um, S. and Kirdmanee, C. (2009). Effect of salt stress on proline accumulation photosynthetic ability and growth characters in two maize cultivars. *Pak J Bot*, 41: 87-98.
- Da Graça, J.; Rodrigues, F.; Farias, J.; Oliveira, M.D.; Hoffmann-Campo, C.; Zingaretti, S. (2010) Physiological parameters in sugarcane cultivars submitted to water deficit. *Braz J Plant Physiol*, 22: 189–197.
- Hiscox, J.D. and Israelstam, G.F. (1979). A method for extraction of chlorophyll from leaf tissue without maceration. *Can J Bot*, 57: 1332-1334.

- Jakhar, N.K. and Kumar, A. (2018). Principal component analysis and character association for yield component in greengram (*Vigna radiata*) (L.) Wilczek) genotypes. *J Pharmacogn Phytochem*, 7: 3665-3669.
- Jangpromma, N.; Thammasirrirak, S.; Jaisil, P. and Songsri, P. (2012). Effect of drought and recovery from drought stress on above ground and root growth, and water use efficiency in sugarcane (*Saccharrum officinarum* L.). *Aust J Crop Sci*, 6: 1298-1304.
- Kohila, S. and Gomati, R. (2018). Adaptive physiological and biochemical response of sugarcane genotypes to high-temperature stress. *Indian J Plant Physiol*, 23: 245-260.
- Medeiros, D.B.; da Silva, E.C.; Nogueira, R.J.M.; Teixeira, M.M. and Buckeridge, M.S. (2013). Physiological limitations in two sugarcane varieties under water suppression and after recovering. *Theor Exp Plant Physiol*, 25:123-222.
- Marcos, F.C.C.; Silveira, N.M.; Marchiori, P.E.R.; Machado, E.C.; Souza, G.M.; Landell, M.G.A. *et al.* (2018). Drought tolerance of sugarcane propagules is improved when origin material faces water deficit. *PLoS ONE*, 13(12): e0206716.
- Silva, M.A.; Jifon, J.L. and Silva, J.A.G. (2007). Use of physiological parameter as fast tools to screen for drought tolerance in sugarcane. *Braz J Plant Physiol*, 19: 193-201.
- Silva, M.A.; Pencelli, R.P. and Barbosa, A.M. (2018). Water stress effect on chlorophyll fluroscence and chlorophyll content in sugarcane cultivars with contrasting tolerance. *Biosci J*, 34: 75-87.
- Silva, M.D.A.; Jifon, J.L.; dos Santos, C.M.; Jadoski, C.J.; da Silva, J.A. (2013). Photosynthetic capacity and water use efficiency in sugarcane genotypes subject to water deficit during early growth phase. *Braz Arch Biol Technol*, 56: 735-748.
- Surendar, K.K.; Devi, D.D.; Ravi, I.; Jeyakumar, P. and Velayudham, K. (2013). Water stress affects plant relative water content, soluble protein, total chlorophyll content and yield of ratoon banana. *Int J Hortic*, 3: 96-103.

- Tetsushi, H. and Karim, M.A. (2007). Flooding tolerance of sugarcane in relation to growth, physiology and root structure. *South Pac Stud*, 28: 9-22.
- Toppa, E.V.B.; Jadoski, C.J.; Julianetti, A.; Hulshof, T. and Ono, E.O. (2010). Physiology aspects of sugarcane production. *Appl Res Agrotec*, 3.
- Vankova, R.; Dobra, J. and Storchova, H. (2012). Recovery from drought stress in tobacco. *Plant Signal Behav*, 7: 19-21.
- Zhao, D.; Glaz, B. and Comstock, J.C. (2013). Sugarcane leaf photosynthesis and growth characters during development of water-deficit stress. *Crop Sci*, 53: 1066-1075.
- Zhao, D. and Li, Y. (2015). Climate change and sugarcane production: potential impact and mitigation strategies. *Int J Agron*, 547386.