

VARIABILITY ESTIMATES FOR YIELD AND YIELD COMPONENTS IN SORGHUM (SORGHUM BICOLOR (L.) MOENCH)

B. Vijaya Lakshmi* and Y. Radha Krishna

AICRP on Sorghum, Agricultural College Farm, Bapatla (A.P.)

Abstract

One hundred and twenty two genotypes were used to estimate genetic variability parameters such as heritability and genetic advance for seven traits. The results obtained from present investigation showed that adequate variability among the test entries. The phenotypic co-efficient of variation (PCV) were higher than genotypic co-efficient of variation (GCV) for all seven traits indicating that they all interacted with the environment to some extent but the magnitude of difference between PCV and GCV observed was relatively low. Grain yield/plant showed higher estimates of GCV (74.39) and PCV (76.44) followed by fodder yield/plant, panicle weight, panicle length, 100 grain weight and plant height therefore, simple selection can be practiced for further improvement of these characters. High heritability coupled with moderate genetic advance was obtained for days to 50% flowering and plant height indicates the role of both additive and non additive gene action in its inheritance. High heritability coupled with high genetic advance were obtained for panicle length, panicle weight, 100 grain weight grain yield/plant and fodder yield/plant indicating that these traits are predominantly under the control of additive gene action and hence these characters can be improved by selection.

Key words: Sorghum, Variability and yield component traits.

Introduction

Sorghum is the world's fourth most important cereal, in terms of both production and area planted. Roughly 90% of the world's sorghum area spread in the developing countries, mainly in Africa and Asia. Globally, it is cultivated on 41 million hectares to produce 64.20 million tonnes with productivity hovering around 1.60 tonnes per hectare. It is now recognized worldwide as a smart crop capable of providing food, feed, fodder and fuel especially under moderate inputs and water-deficit environments. Assessment of genetic diversity becomes an essential prerequisite for identifying potential parents for hybridization. Diverse parents are expected to yield higher frequency of the heterotic hybrids in addition to generating a broad spectrum of variability in segregating generations. Genetic improvement for quantitative traits depends upon the nature and amount of variability present in the genetic stock and the extent to which the desirable traits are heritable. To increase sorghum production a study of yield and its component characters viz. plant height, days to 50 % flowering, panicle length, 100-grain weight, yield/

plant and fodder yield/plant are important and also essential fundamental task for making any successful breeding program (Xing and Zhang, 2010). The yield component does not act independently and in general, they are interrelated with each other that ultimately bring about the grain yield. Moreover, most of the yield component traits are quantitative in nature and the variability present in them is both heritable and nonheritable (Stuber, 1987). Thus, the knowledge of genetic variability present in a given crop species for the character under improvement is of paramount importance for the success of any plant breeding program (Hub, 2011). Heritability of a trait is important in determining its response to selection. The broad sense heritability is the relative magnitude of genotypic and phenotypic variance for the traits and it gives an idea of the total variation accounted to genetic effect (Allard, 1960). Hence, the present study was conducted to assess the genetic variability, heritability and genetic advance (GA) in 122 genotypes.

Materials and Methods

*Author for correspondence : E-mail : bapatlamillets@gmail.com

The experimental material comprised of 104 land

races and 18 improved sorghum genotypes. These122 genotypes were grown at the Agricultural college farm, Bapatla during Rabi 2015-16 with a spacing of 45 cm \times 15 cm between and within row respectively. The experiment was laid out in randomized block design with two replications. All the recommended agronomic and cultural measures were taken up in conducting the experiment. Observations were recorded on five competitive plants in each genotype in each replication for seven characters viz., days to 50 per cent flowering, plant height (cm), panicle length (cm), panicle weight (g), 100 grain weight (g), grain yield per panicle (g) and fodder yield/plant (g). The mean values were used for statistical analysis. The data was analyzed statistically for genotype and phenotype coefficients of variation (Burton and Devane (1953), Heritability (Allard, 1960) genetic advance as per cent of mean were calculated as suggested by Johnson et al. 1955.

Results and discussion

The analysis of variance for different characters is furnished in table 1. A wide range of variation was observed among one hundred and twenty two genotypes for seven characters. This indicated presence of variability among the lines being evaluated and ample scope of improvement by selection. The range was highest for

 Table 1: Analysis of variance for yield and yield components in Sorghum

Source	Replication	Treatments	Error					
Degrees of freedom	2-1	121	121					
Mean squares								
Days to 50% Flowering	1.80	63.33**	2.01					
Plant height (cm)	2.2	1640.02**	2.01					
Panicle Length (cm)	0.02	52.33**	41.71					
Panicle weight (g)	0.07	493.64**	1.16					
100 grain Weight (g)	0.02	0.85**	7.20					
Grain Yield/Plant (g)	0.05	292.80**	7.96					
Fodder yield/ plant	1.8	676.97**	11.6					

** Significant at 1% level.

plant height (72 cm-217.1 cm) followed by panicle weight (3.85- 86.7), fodder yield/plant (8-86), grain yield/plant (3.4-61.53), days to 50% flowering (45-79), panicle length (7-29.05) and 100 grain weight (1.31-4.72)

The estimate of genotypic coefficient of variation (GCV) was lower than phenotypic coefficient of variation

 Table 2: Mean variability, heritability and genetic advance as per cent of mean for yield components in Sorghum

	Mean	Rang		Coefficient of variation (%)		bility	Genetic advance			
Character							advance as % of			
		Mini- mum	Maxi- mum	GCV	PCV	(broad sense)	mean (5%) level			
Days to 50% Flowering	56.70	45.00	79.00	9.14	9.77	78	19.49			
Plant height (cm)	130.95	72.00	217.10	21.59	22.14	81	13.35			
Panicle Length (cm)	17.69	7.00	29.05	28.60	29.24	86	57.61			
Panicle weight (g)	31.22	3.85	86.70	49.95	50.68	97	101.40			
100 grain Weight (g)	2.70	1.31	4.72	24.05	24.41	72	48.81			
Grain Yield/ Plant (g)	16.04	3.40	61.53	74.39	76.44	83	65.17			
Fodder yield/ plant	35.88	8.00	86.00	50.83	51.71	74	82.94			

for all the traits studied (table 2). Although, the phenotypic coefficient of variation was greater than genotypic coefficient of variation, the difference between them were of lower magnitude. The character studied in the present investigation is under genetic control but influenced by environment. Among all the characters under study, grain yield/plant showed higher estimates of GCV (74.39) and PCV (76.44) followed by fodder yield/plant, panicle weight, panicle length, 100 grain weight and plant height therefore, simple selection can be practiced for further improvement of these characters. Sharma et al. (2006) reported that high GCV and PCV values for grain yield/ plant and Rekha Chittapur and Biradar (2015) for panicle length, panicle weight and grain yield/plant. However, low GCV (9.14) and PCV (9.77) values were recorded for days to 50 % flowering. Similar results were reported earlier by Mallinath et al. (2004).

The effectiveness of selection for any character depends not only on the extent genetic variability but also in the extent to which it will be transferred from one generation to next generation. In the present study high estimates of heritability were recorded for all the characters. High heritability suggests high component of heritable portion of variation that can be exploited by breeders in selection of superior genotypes on the basis of phenotypic performance. These findings were in consonance with the reports made earlier by Rekha Chittapur and Biradar (2015) for days to 50% flowering, plant height, panicle length, panicle weight, 100 grain weight.

The genetic advance is a useful indicator of the progress that can be expected as result of exercising selection on the pertinent population. High heritability coupled with high genetic advance would give a more reliable index of selection value (Johnson et al. 1955). High heritability coupled with moderate genetic advance were obtained for days to 50% flowering and plant height indicates the role of both additive and non additive gene action in its inheritance. High heritability coupled with high genetic advance were obtained for panicle length, panicle weight, 100 grain weight, grain yield/plant and fodder yield/plant indicating that these traits are predominantly under the control of additive gene action and hence these characters can be improved by selection. Similar observations were recorded by Biradar (1996) for panicle weight and Tiwari et al. (2003) for test weight in sorghum

References

Allard, R.W. (1960). *Principles of Plant Breeding*. John Wiley and Sons Inc., New.

Biradar, B.D., R. Parameshwarappa, S.S. Patil and P. Parameshwargoud (1996). Inheritance of seed size in sorghum (Sorghum bicolor L. Moench). Crop Research, **11**:331-337.

- Burton, G.W. E.W. and Devane (1953). Estimating heritability in tall fescue (*Festuca arundiraceae*) from replicated clonal material. *Agronomy Journal*, **45**:478-481.
- Chittapur, Rekha and B.D. Biradar (2015). Association studies between quantitative and qualitative traits in *rabi* sorghum. *Indian J. Agric. Res.*, **49(5)**: 468-471.
- Johnson, H.W., H.F. Robinson and R.E. Comstock (1955). Estimates of genetic and environmental variability in soybean. *Agronomy Journal*, **47**: 314-318.
- Hub, B. (2011). Definition and Significance of Genetic Variability. *Crop Research*, **32** (1): 69-71.
- Mallinath, V., B.D. Biradar, B.M. Chittapur, P.M. Salimath and S.S. Yenagi and Patil (2004). Variability and correlation studies in pop sorghum. *Karnataka J. Agril. Sciences*, 17(3): 463-467.
- Sharma, H., D.K. Jain and V. Sharma (2006). Genetic variability and path coefficient analysis in sorghum. *Indian J. Agric. Res.*, 40(4): 310-312.
- Stuber, C.W. and M.D. Edwards (1987). Molecular Marker-Facilitated Investigations of Quantitative Trait Loci in Maize. II. Factors Influencing Yield and its Component Traits. *Crop Sci.*, 27(4): 639-648.
- Tiwari, D.K., R.S. Gupta and R. Mishra (2003). Genotypic phenotypic correlations in grain sorghum. *Plant archives*, 3(32):283-286.