PLANT BASED NATURAL SWEETENER STEVIA AND ITS APPLICATION IN FOOD INDUSTRY

Upasana Yadav¹, Risha Gupta² and Srishti Khurana²

¹Assistant Professor, Department of Nutrition & Dietetics, Manav Rachna International Institute of Research and Studies, Faridabad, Haryana, India
²Department of Food Technology, Lady Irwin College, University of Delhi, Delhi, India
*E-mail: upasana.ndri@gmail.com

(Date of Receiving-20-09-2020 ; Date of Acceptance-15-12-2020)

ABSTRACT

Stevia is a perennial shrub belonging to Asteraceae family. It has been in use for hundreds of years for medicinal purposes. Stevia contains natural compounds stevioside and rebaudioside A, extracted from its leaves, which can be approximately 150-300 hundred times sweeter than sucrose. It is an alternative choice to table sugar and HFCS utilized in beverages, bakery, confectionary, dairy food products. Besides being a zero-calorie meals ingredient, it has a protracted shelf life, high-temperature tolerance and is non-fermentative. This review article focuses on its health benefits, manufacturing of Stevia extract from Stevia leaves and their end-product utility in the food industry.

Keywords: Stevioside, sweetener, properties, therapeutic, food application

INTRODUCTION

Sucrose or commonly known as table sugar can prove to be detrimental for our health when consumed in high quantities on a regular basis. Sucrose consumption provides us with 4kcal/g of energy but this comes with no other nutrient that our body requires. Excessive consumption of sugar can downscale the other nutrients present in nutritionally dense foods. Sugar if consumed in large amounts can lead to a phenomenon known as ‘internal starvation’. This makes us feel hungrier after its consumption. Sugar doesn’t act as a source of energy in the normal intake quantities. It however has been found to prevent and hinder energy production from other sources (DiNicolantonio, Berger, 2016).

According to a 2016 study, consumption of a high sugar diet has effects more far reaching than a diet high in saturated fats. Sugar increases the risk of Coronary Heart disease. It could lead to increased blood glucose levels and an elevated risk for Fatty liver disease. The mortality rate due to Cardiovascular Diseases was found to be significantly higher when sugar consumption is immoderate (DiNicolantonio, Berger, 2016). CVDs are a cause of major concern in India, with the average death rate being higher than the global average. An unhealthy lifestyle and an improper diet are the leading factors for this disease (Prabhakaran, Jeemon, Roy, 2016). Therefore, there is need to reduce sugar consumption and to come up with low calorie alternate sweeteners.

Stevia is an ideal sweetener. One kg of Stevia is 200 times sweeter than the same amount of table sugar (Ranjan et al., 2011). It has zero calories. It has been found to have a slight bitter aftertaste which has been attributed to stevioside (Yadav et al., 2011). In rat studies, the use of Stevia lowered blood glucose levels. Fatty rats with type- II diabetes showed improvement. It has also shown promise as a vasodilator in hypertensive animals (Ranjan et al., 2011).

Plant characteristics

Stevia rebaudiana grows up to 65-80 cm (Goyal & Goyal, 2010). It has 3-4 cm long leaves which are elliptical in shape. The stem is brittle and woody. The branching root network extends from the rhizome. The flower has 5 petals and is white in colour with a light purple corolla tube (Lemus-Mondaca et al., 2012).

Stevia is an easily cultivable plant which grows in semi-humid and subtropical conditions. It requires well-drained red soil and sandy loam soil which favours the growth of plant while saline soil is considered to be unfavourable. The ideal pH for the soil is between 6.5-7.5 (Goyal & Goyal, 2010).

In the last decade, Stevia cultivation has started in the Indian states of Maharashtra, Rajasthan, Karnataka, Orissa, Andhra Pradesh, Karnataka, Chhattisgarh and West Bengal etc. With a high production potential of 2-3 t ha⁻¹ of dry leaves, India has a competitive edge. The climate in many states is conducive to the growth of Stevia (Kumari & Ghosh, 2019).

Structure and Composition

The Stevia leaves comprises 80-85% of water (Sharma et al. 2006). It contains diterpene glucosides viz. Stevioside and rebuadioside impart a sweet taste (Brandle, Starratt, Gijzen, 1998). Many natural products

are cancer growth blockers ethanolic extract of stevioside et al. 2009). The methanolic and cause of formation of ulcers and gastric lesions (Pandiyan has also been found to reduce free acidity which is the it impedes the action of pepsin (Shiozaki et al. 2006). It reduces histamine-induced gastric abnormalities and Stevioside is believed to be responsible for this action, it blocks a calcium channel which inhibits the contraction of smooth muscles. (Deshmukh et al., 2018)

Therapeutic Values and Health benefits of S. Rebaudiana

Stevia extract has shown promise as a cure for diseases like CVD, Diabetes mellitus, cancer etc. (Megeji et al. 2005). The secretion from INS-1 and β cells of islets of Langerhans is believed to be the reason for the hypoglycemic action of Stevia leaf extract. According to a study conducted by Melis on rats, in higher doses than that used for sweetening, Stevia extract showed vasodilating action. In hypertensive rats it also lowered arterial pressure (Melis, 1992). Stevioside present in Stevia extract exhibits gastroprotective action in cases of Inflammatory Bowel Disease (IBD) (Shiozaki et al. 2004). The mechanism that has been suggested for the anti-inflammatory effect of Stevia extract involves the blocking of Calcium channel which inhibits the contraction of smooth muscles. Stevioside is believed to be responsible for this action, it reduces histamine-induced gastric abnormalities and it impedes the action of pepsin (Shiozaki et al. 2006). It has also been found to reduce free acidity which is the cause of formation of ulcers and gastric lesions (Pandiyan et al. 2009). The methanolic and ethanolic extract of stevioside are cancer growth blockers (Deshmukh et al. 2018).

Processing of Stevia

The process of Stevia consists of diverse steps like-crushing of leaves, extraction of stevial glycosides from Stevia leaf extracting with water, filtering and separating the liquid from material, then purifying the extract with water or meals grade alcohol. This is followed by means of drying to attain a pure Stevia extract. Dried leaves are steeped in water once that separated and purified the sweet molecules are extracted which are present in plant. With a pure Stevia leaf extract, the extraction and purification process bring sweetness more like sugar taste to it. According to Codex Alimentarius commission and JECFA the ADI for Steviol glycosides is 4mg/kg body weight/day.

APPLICATIONS OF STEVIA IN FOOD INDUSTRY BEVERAGE INDUSTRY: Stevia could also be a used by leading beverage brands in the form of ready-to-drink (RTD) teas, sugary occasional beverages, Carbonated soft drinks (CSDs), Flavoured waters, juices and alcoholic beverages. It provides a strategic selling approach like innovation, artificial sweetener replacement, sugar moderation for teenagers and adults (Clos, 2008).

Stevia could also be a powerful ingredient to eliminate sugars from a number of drinks. It offers advantages like zero calories, natural origin, stability and a huge variety in application. Category-specific Stevia solutions will cut back sugar whereas protect its flavour and mouthfeel. (Mintel,2004 Ranji, 2014)

1.1 Soft Drinks: Stevia’s rapid growth in beverage market has several advantages like being natural and calorie free, it’s good for dental health as it doesn’t ferment and has a stable pH. Another one its advantages is that its heat stable and to light exposure which makes it’s a preferable choice even for drinks which require heat treatment like pasteurization (Kroyer, 2010).

Stevia may be a very good sweetener alternative for CSDs that typically have low pH. The number of flavour options which utilize Stevia as a sweetener has also seen a rise in the last few years. New flavours like Cola and lime and lemon have been introduced. The possibilities are endless. What needs to be kept in mind while formulating a new beverage is to achieve a balance between the sweetness and acidity. The concentration of stevial glycosides that is used, plays a crucial role in doing so (Chang and Cook, 1983).

1.2 Tea and Coffee: Tea is one of the most

Farming- Stevia is a sustainable hardy crop which is native to South America	Harvesting
Purification- Food-grade alcohol and water are used to rinse the extract. The purified extract is then dried	Extraction- Steviol glycosides are extracted by steeping in water similar to tea
Finished Ingredient- It is almost 400x sweeter than sucrose	Product- Stevia extract is a zero-calorie substitute to sugar which can be added to a number of food products as a sweetener
popular beverages consumed by man. Sweet tea is favoured by several consumers; hot or cold. There are numerous choices to sweeten home-baked or RTD tea from natural extract or artificial sweeteners. With the growing quality of Stevia, 392 new RTD teas sugared with Stevia are introduced into the market within the recent past (Trevizam-Moraes et al., 2010) Formulators try to seek out choices for the consumers to possess the sweet drink without calories. Stevia based mostly sweeteners will cut sugar amount in coffee whereas enhancing the mouthfeel perception in ice coffee making it creamier. Stevia adds more value to sweetened type tea drinks. When in a study the antioxidant potential of black and green tea was analysed. It was found that all sweeteners other than Stevia lowered it antioxidant activity (Korir et al., 2013). Analysis on coffee indicates that a formulation with zero.0998% Stevia leaf extract was similar in ideal sweetness profile to it of 12.5% (Azevedo, 2012).

Juice: Consumers are attempting to seek out less sugar in juice products. They have turned towards healthier option that contain lower calories and added sugars. Sugar is added to juices and fruit beverages in order to accentuate the natural sweetness of the fruit, this accounts for higher amounts for higher calories. When researchers used a combination of Steviosides and Saccharose for Peach juice. They found that it might end in 25% reduction in calories, remaining stable under traditional thermal additionally as high process conditions (Parpinello, 2001).

Dairy Industry: Dairy historically showed up several challenges for formulators making an attempt to reduce sugar whereas maintaining texture, indulgence and mouthfeel. Stevia is great choice as a result of its stability throughout the sterilisation method.

Yogurt: Flavoured yoghurt is very popular as a breakfast accompaniment, mostly in European countries but also all around the world. A study conducted to substitute sucrose in strawberry flavoured yoghurt. It showed that the amount of sucrose used can be cut by half by using it in combination with Stevia (*rebaudiana A*). This can be done affecting the rest of the composition (Reis, 2011). Stevia works wonderfully well when used with another sweetener. Thus, it has very good synergistic qualities (Hergesell et al., 2014).

Flavoured Milk: Flavoured milk, like milk which can be a preferred and consumed drink, with wide sensory acceptance among consumers of assorted ages and socio-economic levels (Paixão, 2014). Milk supplies of Calcium, vitamin D, hepatoflavin and phosphorus, potassium, vitamin A, cobalamin and vitamin B complex (Krebs-Smith, 2014). Incorporating Stevia may be a great possibility for reducing the sugar levels in flavoured milk. It’s necessary to take care of consumers’ acceptance, particularly for kids, when reducing sugar in milk. Formulation of flavoured milk with Stevia tends to work best for larger sugar reductions, and Stevia’s natural flavours enhances cocoa and farm products. Stevia is usually used as a thickening agent and complex carbohydrate by providing higher mouthfeel in low sugar formulations (Johnson, 2002).

ICE CREAM: the sweeteners utilised in dessert have a vital influence on consumer acceptance because of their impact on texture and freezing purpose, consistency and texture. For economic and practical reasons, saccharose (sugar) is usually used in dessert production. However, the use of non-nutritive sweeteners is increasing because of health considerations concerning ice cream’s high-sugar content. In studies conducted using Stevia, the resultant product had a considerably lower consistency and brix with a higher overrun and melting rate. Whereas mixtures containing each saccharose and *Stevia* had higher sensory acceptance than the ones made entirely with *Stevia* (Alizadeh & Azizi-Lalabadi, 2014).

Baked Goods: In many elements of the world, which include Europe, sweet products inclusive of cakes, cookies, muffins (Karp, 2017) and biscuits are contributing exceptionally to overall sugar intake. Incorporating Stevia is a splendid preference for lowering the sugar observed in a lot of those products. Sugar

<table>
<thead>
<tr>
<th>S.No.</th>
<th>Proximate Composition</th>
<th>Concentration % DW</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Moisture(g/100g)</td>
<td>7.2±1.0</td>
</tr>
<tr>
<td>2.</td>
<td>Protein(g/100g)</td>
<td>16.0 ±0.58</td>
</tr>
<tr>
<td>3.</td>
<td>Carbohydrates (g/100g)</td>
<td>31.2±1.10</td>
</tr>
<tr>
<td>4.</td>
<td>Crude Fat(g/100g)</td>
<td>4.2±0.3</td>
</tr>
<tr>
<td>5.</td>
<td>Ash (g/100g)</td>
<td>11.9±0.95</td>
</tr>
<tr>
<td>6.</td>
<td>Crude Fibre(g/100g)</td>
<td>14.83±0.89</td>
</tr>
<tr>
<td></td>
<td>Minerals</td>
<td></td>
</tr>
<tr>
<td>7.</td>
<td>Iron (mg/100g)</td>
<td>9.0±1.15</td>
</tr>
<tr>
<td>8.</td>
<td>Calcium(mg/100g)</td>
<td>18.7±0.20</td>
</tr>
</tbody>
</table>

Table 1: Proximate Analysis of *Stevia* leaf powder
Table 2. Compounds imparting sweet taste to *S. rehmanniana*

<table>
<thead>
<tr>
<th>S. No</th>
<th>Component</th>
<th>Amount</th>
<th>Structure</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Dulcoside A</td>
<td>0.3%</td>
<td></td>
<td>Chalapathi, MV, Thimmegowda S, 1997</td>
</tr>
<tr>
<td>2.</td>
<td>Rebaudioside A</td>
<td>2-4% w:w</td>
<td></td>
<td>Prakash et al., 2008</td>
</tr>
<tr>
<td>3.</td>
<td>Rebaudioside D</td>
<td>0.6%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4.</td>
<td>Rebaudioside E</td>
<td>3.8%</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5.</td>
<td>Stevioside</td>
<td>4-13% w:w</td>
<td></td>
<td>Prakash et al., 2016</td>
</tr>
</tbody>
</table>

is one of the crucial elements in bakery products. It offers a sweet flavour and additionally contributes to crispness, cell structure, browning, tenderization and shelf stability. Research confirms the benefits of incorporating bulking agents like fibre into *Stevia* sweetened baked products. The addition of coffee silver-skin (fibrous husks) improved moisture and coloration in reduced-sugar biscuits made with *Stevia* (Gao, 2016). In addition to bulking agents, extra moisture can assist create a higher texture. *Stevia* is heat labile so its sweetness isn’t lost whilst baking.

Chocolate & Confectionery:
Sugar, particularly sucrose, is one of the important elements in chocolate. Sucrose is responsible for improving both taste and texture of the final product. Replacement of sugar with *Stevia* may be used with a different technology to lessen the quantity of sugar level.
In a study when Stevia along with isomalt was used as an alternative to Stevia. The result showed that the added Stevia and isomalt has no effect on factors such as acidity, fat and colour. It did have an effect on its hardness, calories, water activity, moisture and ash. The final product with 40% Stevia and 60% isomalt was accepted the most on the basis of physicochemical and sensory scores. 79(Berenjy, Saboohi, Nateghi, 2020).

In another study a bulking agent such as inulin, polydextrose and maltitol were used in addition to Stevia to replace sucrose. The final results indicate that the use of maltitol with Stevia; maltitol, polydextrose, inulin and Stevia yielded the best results. The calories provided by these two variants were less by 9.1% and 18.2% from the control. The variant made using all three- maltitol, inulin and polydextrose also boasted a fibre content of 16%. The final products thus achieved very most similar to the control sample on the basis of sensory and quality properties (Aguilar-Villa et al., 2020)

CONCLUSION

Stevia can be used as a calorie alternative especially in high carbohydrate diets. Stevia leaves impart sweetness and have many additional health benefits. Furthermore, Stevia has several antioxidants that lower blood pressure level, cholesterol, renal problems, obesity, dental caries etc and controls diabetes. Minerals are found in trace amounts like, potassium, phosphorus, magnesium, etc. In the food processing industries such as beverage, dairy, confectionary, chocolates, baked products. Stevia is a vital ingredient to eliminate sugars while preserving flavour and mouthfeel of the original product. Stevia has proven to perform well as a sucrose alternative and has been proven for consumption safe by most studies conducted thereby leading to its increased demand in the market.

REFERENCES

Study of antioxidant, biological activity and docking study for phenolic acids in rosmarinus officinalis L. crude extract

26478-3_9-1

