EVALUATION OF QUALITY ATTRIBUTES AND STORABILITY OF POMEGRANATE BASED BLENDED DRINK

Dhananjay Kumar¹, Dashrath Bhati¹, Harendra² and Sanjib Debnath¹

¹School of Agriculture, ITM University, Gwalior, M.P. India. 2School of Agricultural Sciences, GD Goenka University, Sohna Road Gurugram, Haryana- 122 103, India.

Email for Correspondence: a7906837701@gmail.com

(Date of Receiving : 18-01-2023; Date of Acceptance : 22-03-2023)

ABSTRACT

The present investigation was carried out at Post Graduate Laboratory, Department of Horticulture, School of Agriculture, ITM University, Gwalior (M.P.) India. Fruit based blended RTS beverages and juices are not only rich in essential minerals, vitamins and other nutritive factors but also have a delicious and have a universal appeal. 10 per cent of blend comprising 80 per cent pomegranate juice, 10 per cent Aloe vera gel and 10 per cent ginger juice (T₆) was found best on 9-point hedonic scale for the preparation of RTS with 13.00 per cent TSS, 0.25 per cent acidity and 70 ppm sodium benzoate than other blend combinations. The TSS, acidity, reducing sugars and total sugars increased whereas, pH, vitamin-C, non-reducing sugar and organoleptic score decreased continuously up to the end of the storage period under ambient temperature (20-28°C). Moreover, it had been found that RTS organoleptically acceptable up to 4 months in polypet bottles without any deterioration.

Keywords: Pomegranate, Aloe vera, Ginger, RTS, Polypet Bottles, Organoleptic quality, Storage.

Introduction

Pomegranate (Punica granatum L.) is one of the important dessert fruit crops cultivated in tropical and subtropical regions of the world. The pomegranate belongs to the family of Punicaceae or Lythraceae. It is also known as the Chinese Apple or Apple of Carthage or Apple with many seeds. Pomegranate is known as a super fruit of next generation and is native to Iran. It is extensively grown in Iran, Spain, India and USA as well as in most Near and Far East countries (Schubert et al., 1999) Pomegranate flesh contains 10 mg calcium, 44 mg magnesium, 70 mg phosphorus, 133 mg potassium, 1.79 mg Iron, 0.90 mg sodium, 0.82 mg zinc, 0.77 mg manganese, 0.44 mg copper, 16 mg vitamin C, 78 per cent moisture, 1.6 per cent protein, 14.6 per cent total sugars and 0.7 per cent ash per 100 g (Chavan et al., 1995). The Pomegranate flesh is used as a base of various fruit products like anardana and various type of juice product like minimally processed fresh arils, juice, squash, beverage, molasses, juice concentrates, frozen seeds, jam, jelly, marmalades, grenadine, wine, seeds in syrup, pomegranate spirits, pomegranate powder, pomegranate rind powder, anardana, confectionery, pomegranate seed oil etc. (Yadav et al., 2006). Juice blending is one of the best methods to improve nutritional quality of a juice. It can improve the vitamin and mineral contents depending upon the kind and quality of fruits and vegetables used (De Carvalho et al., 2007).

Aloe vera (Aloe barbadensis Miller) belongs to Liliaceae family traditional being utilized as contemporary folk remedy. There are over 250 species of aloe vera grown around the world; However only two species viz. A. barbadensis Miller and A. aborescens are considered the most importance one for processing point of view (Castillo et al., 2005). The interest and use of gel has increased dramatically in the field of health care and cosmetics. It can be utilized as a valuable ingredient for food application due to its biological activities and functional properties (Kojo E, Qian H, 2010). Aloe vera gel has a bitter taste which can be unpleasant in raw state and its palatability could be enhanced with addition of some other fruit juices.

Ginger scientifically known as Zingiber officinale Rosc. belongs to the family of Zingiberaceae. Ginger is extensively used in ayurvedic medicines since long back, ginger has been used to cure dyspepsia, gastritis, blood circulation disturbance and inflammatory diseases. It displays potential antipyretic, antiallergenic, analgesic, antitussive and chemopreventive activities (Sabulal et al., 2007).

Ready-to-serve (RTS) beverages have been increasingly gaining popularity throughout the country due to their health and nutritional benefits apart from providing pleasing flavor and taste. Fruit based RTS beverages and juices are not only rich in essential minerals, vitamins and other nutritive factors but also have a delicious and have a universal appeal (Manan et al., 1992).

Material and Method

Raw Materials

Pomegranate (cv. Arakta), Aloe vera gel (Local variety) and ginger extract (Local variety) purchased from local market were used for the RTS preparation.
Evaluation of quality attributes and storability of pomegranate based blended drink

Extraction of pomegranate juice, Aloe vera gel and ginger Juice

The process adopted for the extraction of pomegranate, Aloe vera gel and ginger extract is given in Fig. 1, Fig. 2 and Fig. 3, respectively.

Standardization of blends for RTS

The following combinations pomegranate juice, Aloe vera and ginger extract were evaluated to standardize the blend for the development of palatable and quality RTS.

T1 10 per cent blend comprising 100 per cent pomegranate juice + 0 per cent Aloe vera gel + 0 per cent ginger juice and adjusted to 13 per cent TSS, 0.25 per cent acidity and 70 ppm SO₂.

T2 10 per cent blend comprising 0 per cent pomegranate juice + 100 per cent Aloe vera gel + 0 per cent ginger juice and adjusted to 13 per cent TSS, 0.25 per cent acidity and 70 ppm SO₂.

T3 10 per cent blend comprising 0 per cent pomegranate juice + 0 per cent Aloe vera gel + 100 per cent ginger juice and adjusted to 13 per cent TSS, 0.25 per cent acidity and 70 ppm SO₂.

T4 10 per cent blend comprising 60 per cent pomegranate juice + 20 per cent Aloe vera gel + 20 per cent ginger juice and adjusted to 13 per cent TSS, 0.25 per cent acidity and 70 ppm SO₂.

T5 10 per cent blend comprising 70 per cent pomegranate juice + 15 per cent Aloe vera gel + 15 per cent ginger juice and adjusted to 13 per cent TSS, 0.25 per cent acidity and 70 ppm SO₂.

T6 10 per cent blend comprising 80 per cent pomegranate juice + 10 per cent Aloe vera gel + 10 per cent ginger juice and adjusted to 13 per cent TSS, 0.25 per cent acidity and 70 ppm SO₂.

T7 10 per cent blend comprising 90 per cent pomegranate juice + 5 per cent Aloe vera gel + 5 per cent ginger juice and adjusted to 13 per cent TSS, 0.25 per cent acidity and 70 ppm SO₂.

Fig. 1: Flow chart for extraction of pomegranate juice

Fig. 2: Flow chart for extraction of Aloe vera gel

Fig. 3: Flow chart for extraction of ginger juice and adjusted to 13 per cent TSS, 0.25 per cent acidity and 70 ppm SO₂.
Preparation of RTS

RTS comprising 10 per cent blend, 13 per cent TSS and 0.20 per cent acidity were prepared from different treatments. The prepared RTS was organoleptically evaluated on 9-point Hedonic scale to find out the best combination of blend for large scale preparation. The technique used for RTS making is shown in Fig. 4.
Evaluation of quality attributes and storability of pomegranate based blended drink

Storage Studies

About 5 litres of RTS was prepared with best combination of blend, and filled into polypet bottles of 200 ml, capped and put for storage studies under ambient condition (20-28°C). During storage observation on changes in TSS, pH, acidity, vitamin-C, reducing sugars, non-reducing sugar, total sugars and organoleptic quality were recorded at monthly interval. Observations were recorded for changes in TSS, pH, acidity and vitamin-C, sugars and organoleptic quality at monthly intervals during 4 months of storage period and are described as follows. The TSS of the sample of determined by using hand refractometer (Model: ERMA INC. TOKYO JAPAN) having the range of 0-32 percent. The values of TSS recorded at ambient temperature were corrected at 20°C with the help of reference table and the mean value was expressed as per cent. (Ranganna, 2010) whereas the acidity was determined by titrating known quantity of sample against 0.1 N sodium hydroxide solution using phenolphthalein indicator and expressed in per cent anhydrous citric acid. Vitamin-C content was estimated by preparing sample in 3 per cent metaphosphoric acid solution and titrating against 2, 6 dichlorophenol indophenols dye solution till the appearance of light pink colour. The pH was determined by a digital pH meter using 4, 7 and 9.2 buffer solutions. The reducing, non-reducing and total sugars were analyzed by using Fehling’s solution A and B and methylene blue indicator. A panel of 9 semi trained judges evaluated syrup for its colour, flavour, taste, appearance and overall acceptability on 9-point hedonic scale.

Statistical Analysis

The experiments were conducted in 3 replications and the statistical analysis of the data was done by computer software “SPSS” on excel as the method described by Panse and Sukhatme, (1985) for CRD experiment.

Results and Discussion

Chemical Attributes of pomegranate, Aloe vera and ginger

The data pertaining to chemical attributes of fresh pomegranate juice, Aloe vera gel and ginger juice is presented in (Table-1) which revealed that the pomegranate used in RTS making contained 12.71 percent TSS, 0.88 per cent acidity, 3.46 pH, vitamin-C 14.63 mg/100g, 11.60 per
cent reducing sugars, 5.33 per cent non-reducing sugar and
16.93 percent total sugars. Studies support by Bates et al.
(2011) pomegranate contain 13.70 per cent TSS, 0.80 per
cent acidity, 3.65 P11 10.04 mg/100g vitamin-C, 0.911 per
cent reducing sugars, 3.16 per cent non-reducing sugar and
12.27 per cent total sugars.

Aloe vera gel contained 0.88 per cent TSS, 0.24 per
cent acidity, 4.10 P11 2.26 mg/100g vitamin-C, 0.54 per cent
reducing sugars, 1.18 per cent non-reducing sugar and 1.72
per cent total sugars. Whereas, Sudhendra et al. (2012)
reported that Aloe vera gel contains 0.80-0.86 B TSS, 4.50-
4.52 pH, 0.23-0.26 per cent acidity, 3.76-3.86 mg/100g
vitamin-C, 0.026 per cent reducing sugars, 1.894 per cent
non-reducing sugar, 1.92 per cent total sugars.

Ginger contained 2.20 per cent TSS, 0.26 per cent
acidity.6.30 P11 1.93 mg/100 g vitamin-C, 0.61 per cent
reducing sugars, 1.13 per cent non-reducing sugar and 1.74
per cent total sugars. Similarly Hegde et al. (2018) observed
1.50 B TSS, 5.20 pH, 0.24 per cent acidity, 2.70 mg/100 g
vitamin-C, 0.64 per cent reducing sugars and 1.60 per cent
total sugars in ginger.

Standardization of blends for RTS

A quality blended syrup with 10 per cent blend
comprising, 80 per cent pomegranate juice, 10 per cent Aloe
vera gel and 10 per cent ginger juice with 13.00 per cent TSS
and 0.25 per cent acidity was organoleptically found best for
preparation of blend RTS (Table 2). Similarly, Debnath et al.
(2022) reported that 80 % papaya pulp, 10 % ginger juice and
10 % honey was found best on 9- point hedonic scale for
RTS making.

Biochemical changes during storage

Data pertaining to biochemical changes during storage
of RTS into polypet bottles are presented in Table-3 and
respectively which indicates that the TSS of RTS increased
gradually after 4 months of storage from 13.00 per cent to
13.85 per cent into polypet bottles. This change might be due
to the conversion or hydrolysis of polysaccharides into
simple sugars. These results are also in conformity with the
findings of Dhinshukumar et al. (2016) in RTS prepared from
papaya and aloe vera, Harendra and Deen (2021) in mango
based RTS and Deen and Harendra (2022) in rangpur lime
based RTS. The acidity of RTS increased gradually during
storage period. Total acidity was increased from 0.25 per
cent at initial day to 0.77 per cent at final day of storage into
polypet bottles. Degradation of pectic substances and
formation of organic acid have been reported to increase the
acidity of fruit products (Conn and Stumf, 1976). Similarly,
an increasing trend in acidity during storage was observed by
Amin et al., (2018) in blended RTS from pomegranate and
grapes and Gill et al. (2020) in blended RTS beverage
prepared from kagzi lime juice, aloe vera gel and rose
extract. The pH also decreased from the first day 1.42 to
the end of storage day 1.07 into polypet bottles. It was observed
that with the addition of pomegranate the pH of the juice
decreased significantly. This might be due to the comparative
acidic nature of pomegranate which decreases the pH of the
RTS. Similar finding was observed by Fadavi et al. (2006)
and Manoj et al. (2014). Vitamin-C content was continuously
decreased from the first day (2.05 mg/100 ml) to the end of
storage (1.44 mg/100 ml) into polypet bottles throughout the
storage period. This decrease in vitamin-C content might be
due to the oxidation of ascorbic acid into dehydro-ascorbic
acid by oxygen. The loss of vitamin C in RTS of different
fruits-based beverages during storage at ambient temperature
was also reported in previous studies. As also shown by Selvi
et al. (2018) on guava-lime-ginger RTS beverage and Singh
et al. (2018) on blend RTS prepared from mango and aloe
vera. The reducing sugars and total sugars of blended RTS
increased gradually and it was increased from 1.72 per cent
to 2.48 per cent into polypet bottles. The increase in reducing
and total sugars of processed fruit products could be due to
inversion of non-reducing sugar into reducing sugars. These
finding were supported by Byanna and Gowda (2013) in
sweet orange and kokum blended RTS beverage and Khalid
et al. (2019) in strawberry and dates blended ready to serve
drink.

The non-reducing sugar of blended RTS decreased
continuously throughout the entire period of storage and it
was decreased from 0.80 per cent to 0.31 per cent into
polypet bottles. The decrease in non-reducing sugar of
processed fruit products might be due to inversion of non-
reducing sugar. This finding was supported by published
works of Singh et al., (2018) in mango and aloe vera blended
RTS and Mane et al. (2019) in turmeric-orange blend RTS
beverage. Organoleptic score of blended RTS decreased
gradually with the storage period at room temperature (20-
28C) but the acceptability of RTS was maintained up to four
months. The score was significantly decreased from 8.50 at
first day to 7.01 at final day of storage into polypet bottles.
The loss in organoleptic quality of beverages after certain
period is obvious because of undesirable changes in the
products. Temperature plays an important role in biochemical
changes that leads to development of off flavour as well as
discoulouration in the beverages. Reduction in organoleptic
quality is also reported by Harendra and Deen (2021) in
blended RTS beverages of mango, kagzi lime, aloe vera and
ginge and Khalid et al. (2019) in strawberry and dated
blended RTS. These reported observations are in the support
of the present finding.

Table 1 : Chemical characteristics of pomegranate, Aloe vera gel and ginger extract

<table>
<thead>
<tr>
<th>Chemical attributes</th>
<th>Pomegranate juice</th>
<th>Aloe vera gel</th>
<th>Ginger juice</th>
</tr>
</thead>
<tbody>
<tr>
<td>TSS (per cent)</td>
<td>12.71</td>
<td>0.88</td>
<td>2.20</td>
</tr>
<tr>
<td>Acidity (per cent)</td>
<td>0.88</td>
<td>0.24</td>
<td>0.26</td>
</tr>
<tr>
<td>pH</td>
<td>3.46</td>
<td>4.10</td>
<td>6.30</td>
</tr>
<tr>
<td>Ascorbic acid (mg/100g)</td>
<td>14.63</td>
<td>2.26</td>
<td>1.93</td>
</tr>
<tr>
<td>Reducing sugars (per cent)</td>
<td>11.60</td>
<td>0.54</td>
<td>0.61</td>
</tr>
<tr>
<td>Non-reducing sugars (per cent)</td>
<td>5.33</td>
<td>1.18</td>
<td>1.13</td>
</tr>
<tr>
<td>Total sugars (per cent)</td>
<td>16.93</td>
<td>1.72</td>
<td>1.74</td>
</tr>
</tbody>
</table>
Table 2: Organoleptic quality of RTS prepared from different blends of pomegranate juice, Aloe vera gel and ginger juice

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Best blending combination</th>
<th>Organoleptic analysis</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pomegranate juice</td>
<td>Aloe vera gel</td>
</tr>
<tr>
<td>T₁</td>
<td>100</td>
<td>0</td>
</tr>
<tr>
<td>T₂</td>
<td>0</td>
<td>100</td>
</tr>
<tr>
<td>T₃</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>T₄</td>
<td>60</td>
<td>20</td>
</tr>
<tr>
<td>T₅</td>
<td>70</td>
<td>15</td>
</tr>
<tr>
<td>T₆</td>
<td>80</td>
<td>10</td>
</tr>
<tr>
<td>T₇</td>
<td>90</td>
<td>5</td>
</tr>
<tr>
<td>SE(m)</td>
<td>0.05</td>
<td></td>
</tr>
<tr>
<td>C.D. @ 5 per cent</td>
<td>0.16</td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Biochemical and organoleptic changes of RTS during storage into polypet bottles

<table>
<thead>
<tr>
<th>Storage period in months</th>
<th>TSS (per cent)</th>
<th>Acidity (per cent)</th>
<th>pH</th>
<th>Vitamin-C (mg/100g)</th>
<th>Reducing sugars (per cent)</th>
<th>Non-reducing sugar (per cent)</th>
<th>Total sugars (per cent)</th>
<th>Organoleptic quality</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>13.00</td>
<td>0.25</td>
<td>1.42</td>
<td>2.05</td>
<td>1.72</td>
<td>0.80</td>
<td>2.52</td>
<td>8.50</td>
</tr>
<tr>
<td>1</td>
<td>13.09</td>
<td>0.29</td>
<td>1.37</td>
<td>2.00</td>
<td>1.86</td>
<td>0.74</td>
<td>2.60</td>
<td>8.22</td>
</tr>
<tr>
<td>2</td>
<td>13.22</td>
<td>0.37</td>
<td>1.30</td>
<td>1.87</td>
<td>2.05</td>
<td>0.63</td>
<td>2.68</td>
<td>7.90</td>
</tr>
<tr>
<td>3</td>
<td>13.43</td>
<td>0.50</td>
<td>1.20</td>
<td>1.62</td>
<td>2.22</td>
<td>0.50</td>
<td>2.72</td>
<td>7.42</td>
</tr>
<tr>
<td>4</td>
<td>13.85</td>
<td>0.77</td>
<td>1.07</td>
<td>1.44</td>
<td>2.48</td>
<td>0.31</td>
<td>2.79</td>
<td>7.01</td>
</tr>
<tr>
<td>SE(m)</td>
<td>0.02</td>
<td>0.03</td>
<td>0.06</td>
<td>0.04</td>
<td>0.14</td>
<td>0.11</td>
<td>0.26</td>
<td>0.16</td>
</tr>
<tr>
<td>C.D. @ 5 per cent</td>
<td>0.06</td>
<td>0.09</td>
<td>0.19</td>
<td>0.13</td>
<td>0.43</td>
<td>0.35</td>
<td>0.83</td>
<td>0.49</td>
</tr>
</tbody>
</table>

LVM: Like very much, LM: Like moderately

Conclusion

It may be concluded from above findings that RTS prepared from 25 per cent blend comprising 80 per cent pomegranate juice, 10 per cent Aloe vera gel and 10 per cent ginger juice containing 13.00 per cent TSS and 0.25 per cent acidity was best during organoleptic evaluation. The TSS, acidity, reducing sugars, total sugars were increased, whereas, pH, vitamin-C, non-reducing, and organoleptic quality were decreased during storage into polypet bottles. The RTS can be stored up to 4 months at ambient storage temperature (20-28°C) into polypet bottles with acceptable quality.

Acknowledgement

The ITM University Gwalior, M.P. is gratefully acknowledged for providing all kinds of support and facilitate for this experiment.

References

