BIO-EFFICACY OF INDIAN WEED PLANTS LANTANA CAMARA ON COTTON MEALY BUG (PHENACOCCUS SOLENOPSIS)

Devendra Kumar¹, Dhan Prakash², Veena Agrawal³, Suresh Nebapure⁴, Anuj Ranjan¹ and Tanu Jindal¹

¹Amity Institute of Environmental Toxicology, Safety and Management, Amity University,
²Amity Institute of Herbal Research and Studies, Amity University Noida, Uttar Pradesh, India
³Department of botany, University of Delhi, New Delhi
⁴Division of Entomology, Indian Agricultural Research institute, Pusa, New Delhi

Abstract

Chemical and synthetic pesticide are persistence in nature as well as harmful to flora and fauna. Natural management of pests has always been an alternative however their efficacy, preparation, dosage are being widely studied and search of plant based pesticide is a suitable alternative. L. camara is weed with insecticidal activities and also has medicinal values. In this research we have studied methanol extracts of L. camara and their solvent fraction against to Cotton mealy bug (Phenacoccus solenopsis). The crude extract of L. camara shows lowest mortality (46.6%) at 0.01 % dose and highest mortality (93.3%) at 0.5% dose. The LD₅₀ and LD₉₀ estimated for crude extract was at 0.016% and 0.258 % respectively with fiducial limits of 0.005-0.028 and 0.125 to 0.972. Study infers use of crude extracts for the management of Cotton mealy bug (Phenacoccus solenopsis).

Keywords: Phenacoccus solenopsis, L. camara, weed plants.

Introduction

Common use of pesticides in modern agriculture and public health operation systems has resulted in serious environmental problems (Minelli and Rebeiro 1996; Waliszewski et al., 1999). Recently, the interest in the use of plant products has increased; because of cost effectiveness, and low mammalian toxicity (Subramanyam and Roessli, 2000). Farmers and Researchers often claim successful use of plant materials in insect pest control including ash (Ajayi et al., 1987), vegetable oils (Sahayaraj, 2008) and powders of plant parts (Lajide et al., 1998). Examination of indigenous local herbs and plant materials have also been reported from different country viz.: India (Ahmad and Beg, 2001), Australia (Cox et al., 1998), Argentina (Penna et al., 2001) and Finland (Rauha et al., 2000).

The search for natural products to control destructive insects and vectors of diseases is desirable due to the prevalent occurrence of vector resistance to synthetic insecticides (Cheng et al., 2009). An alternative to conventional chemical control is the utilization of natural products from plant and essential oils (De Morais et al., 2007). The search for plant-derived chemicals that have potential use as crop protectants (insecticides, antifeedants, and growth inhibitors) often begins with the screening of plant extracts (Ho et al., 1997). There is imperative need for the development of safer, alternative crop protectants such as botanical insecticides utilized in the development of environmentally safe methods for insect control (Sadek, 2003). The application of biopesticides fits the modern strategy of integrated pest management (IPM) (Matthews, 1999), which combines all suitable control techniques harmoniously with one another and integrates them with other crop production practices, to suppress pest populations below economic injury levels, while maintaining the integrity of the ecosystem. In thus study we evaluate the different solvent extracts plant, L. camara, against to cotton mealy bug, Phenacoccus solenopsis for their contact toxicity. L. camara, also known as wild sage, is a thorny multi-stemmed, deciduous shrub with an average height of 2m (6ft) (Priyanka & Joshi 2013). Leave of Lantana is rich in various active constituents that exhibit excellent antimicrobial, fungidal, insecticidal, nematicidal, biocidal activity (Mishra et al., 2014). Essential oil obtained from the leaves of L. camara showed adulticidal activity against important vectors of malaria, dengue, dengue hemorrhagic fever, yellow fever and chikungunya (Dua et al., 2010). Phenacoccus solenopsis Tinsley (Hemiptera: Sternorrhyncha: Coccoidea: Pseudococcidae) has been reported from 35 localities of various ecological zones of the globe (Ben-Dov et al., 2009).

In India, reports of mealybugs on cotton were made at Gujarat during the 2004-05, 2005-06, and 2006-07 crop seasons although species identity as P. solenopsis could be established only during 2008 (Jhala and Bharpoda, 2008).

Material and Method

Plant Material

Plant materials were collected from nearby area of Amity University campus Noida India, and authenticated by Prof. of University of Delhi, India. Plant materials were washed to remove any dirt’s or contaminants and dried in the shade for few days. Dried plant materials were grounded to obtain powder methanol extract of the plant was obtained by taking 100 g of dried powder in a separate for container.

With this 300 ml of methanol was added and kept for 24 h with periodic shaking then filtered and the filtrate was collected. This procedure was repeated three times with fresh volume of methanol. The filtrates were pooled concentrated separately by Rotary vacuum evaporator at 50-60°C and evaporated to dryness. The extract thus obtained was stored in refrigerator 4°C until further use. Crude extract of plants were dissolved in distilled water. The resulting solution was thick and heterogeneous. The prepared solution was then fractionated with hexane and chloroform (Okoye and Osadebe-2009). Each solution obtained was stored in a clean amber colour bottle at 4°C for future research plan.
Insect Culture

We choose cotton mealy bug because these are large geographical area both tropical and temperate region. These are many crop specially cotton whose are most susceptible crop. These insect collected from ground to lab for bioefficacy test.

Bio-efficacy studies

The toxicity of *L. camara* was tested against larval stages of cotton mealy bug, *Phenacoccus solenopsis*. In first stage, crude extract of the plant was tested with varying concentrations of 0.01, 0.03, 0.05, 0.07, 0.1 and 0.5 %. The concentration was prepared from 2% stock solution using emulsified water (5% tween-80). Cotton leaves collected from fields were washed thoroughly with tap water followed by distilled water and let it dry till excess water gets evaporated. The dosage prepared was used to treat cotton leaves by dipping them in respective dosages in different petri-dishes. Agar slant was used to bury petioles of the leaves to protect them from dying. Ten numbers of larva released in each petri dish for 24 hours and data on mortality of larvae were recorded for each does as well as control. Each experiment was conducted in triplicates. The percent mortality was calculated by adopting the method explained by Abbott, 1925. Further the hexane fraction (0.007, 0.009, 0.01, 0.03, 0.05, 0.07, 0.1 and 0.5 %) and chloroform fraction (0.01, 0.03, 0.05, 0.07, 0.1 and 0.05 %) were also studied to know the activity gradient in each dosage as well as fraction. Data for each studies were recorded carefully and analysed using MS excel and PoloPlus.

Results and Discussion

The crude extract of *L. camara* shows lowest mortality (46.6 %) at 0.01 % dose and highest mortality (93.3%) at 0.5% dose (Table 1). Further, hexane fraction of the *L. camara* shows lowest (36.6%) at 0.007% and highest (76.6%) at 0.5% dose (Table 2). Similarly, the chloroform fraction shows lowest (36.6%) at 0.01 % and highest (70%) mortality at 0.5% dose (Table 3). The LD50 and LD90 data obtained for crude (0.016% and 0.258 % respectively) at fiducial limits of 0.005-0.028 and 0.125 to 0.972. Hexane fraction of the plant extract shows LD50 at 0.044% (fiducial limit 0.017-0.120) and LD90 at 9.26% (fiducial limit 1.249-11.782). The chloroform fraction of the plant extract shows LD50 at 0.845 (fiducial limit 0.125-0.322) and LD90 at 1.509% (fiducial limit 0.690-6.699).

Best mortality in terms of LD50 is shown by crude extract that is at 0.016% followed by hexane fraction and chloroform fraction that is 0.044% and 0.182 % respectively (Table 4). We obtained chi square test 1.578, 0.095, 0.845 in different concentration (Crude extracts, hexane fraction and chloroform fraction) (Table-4).

<table>
<thead>
<tr>
<th>Concentration (%)</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>(Average Mortality) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>10</td>
<td>9</td>
<td>9</td>
<td>93.3</td>
</tr>
<tr>
<td>0.1</td>
<td>9</td>
<td>9</td>
<td>8</td>
<td>86.6</td>
</tr>
<tr>
<td>0.07</td>
<td>9</td>
<td>9</td>
<td>6</td>
<td>80.0</td>
</tr>
<tr>
<td>0.05</td>
<td>8</td>
<td>7</td>
<td>7</td>
<td>73.3</td>
</tr>
<tr>
<td>0.03</td>
<td>7</td>
<td>4</td>
<td>6</td>
<td>56.6</td>
</tr>
<tr>
<td>0.01</td>
<td>6</td>
<td>5</td>
<td>3</td>
<td>46.6</td>
</tr>
<tr>
<td>Control</td>
<td>0</td>
<td>2</td>
<td>0</td>
<td>6.66</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concentration (%)</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>(Average Mortality) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>9</td>
<td>7</td>
<td>7</td>
<td>76.6</td>
</tr>
<tr>
<td>0.1</td>
<td>7</td>
<td>5</td>
<td>5</td>
<td>56.6</td>
</tr>
<tr>
<td>0.07</td>
<td>5</td>
<td>6</td>
<td>5</td>
<td>53.3</td>
</tr>
<tr>
<td>0.05</td>
<td>5</td>
<td>5</td>
<td>5</td>
<td>50.0</td>
</tr>
<tr>
<td>0.03</td>
<td>4</td>
<td>5</td>
<td>4</td>
<td>46.6</td>
</tr>
<tr>
<td>0.01</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>43.3</td>
</tr>
<tr>
<td>0.009</td>
<td>5</td>
<td>4</td>
<td>3</td>
<td>40.0</td>
</tr>
<tr>
<td>0.007</td>
<td>4</td>
<td>4</td>
<td>3</td>
<td>36.6</td>
</tr>
<tr>
<td>Control</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concentration (%)</th>
<th>R1</th>
<th>R2</th>
<th>R3</th>
<th>(Average Mortality) (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.5</td>
<td>7</td>
<td>6</td>
<td>8</td>
<td>70.0</td>
</tr>
<tr>
<td>0.1</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>40.0</td>
</tr>
<tr>
<td>0.07</td>
<td>4</td>
<td>2</td>
<td>3</td>
<td>30.0</td>
</tr>
<tr>
<td>0.05</td>
<td>4</td>
<td>2</td>
<td>1</td>
<td>23.3</td>
</tr>
<tr>
<td>0.03</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10.0</td>
</tr>
<tr>
<td>0.01</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>3.3</td>
</tr>
<tr>
<td>Control</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.0</td>
</tr>
</tbody>
</table>
Table 4: LD\textsubscript{50} and LD\textsubscript{90} estimation and their analysis

<table>
<thead>
<tr>
<th>S.N.</th>
<th>Pesticides</th>
<th>Chi square</th>
<th>Degrees of Freedom</th>
<th>LD\textsubscript{50} Fiducial limits</th>
<th>LD\textsubscript{90} Fiducial limits</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Crude extracts</td>
<td>1.578</td>
<td>4</td>
<td>0.016 0.005 to 0.028</td>
<td>0.258 0.125 to 0.972</td>
</tr>
<tr>
<td>2</td>
<td>Hexane fraction</td>
<td>0.095</td>
<td>6</td>
<td>0.044 0.017 to 0.120</td>
<td>9.826 1.249 to 11.782</td>
</tr>
<tr>
<td>2</td>
<td>Chloroform fraction</td>
<td>0.845</td>
<td>4</td>
<td>0.182 0.125 to 0.322</td>
<td>1.509 0.690 to 6.669</td>
</tr>
</tbody>
</table>

LD\textsubscript{50} – Lethal Dose 50%
LD\textsubscript{90} – Lethal Dose 90%

Currently, the trend in botanical pesticides is shifting towards propriety botanical formulations e.g., 'Universal biopesticide' formulation containing Aloe vera, Lantana camara, Calotropis gigantea, Azadirachta indica and Vitex negundo and garlic are effective against the mealybug (Dinesh et al., 2003). A study by Sadek, 2003 has reported it to be eco-friendly and toxic to agriculturally important insect pest.

![Fig. 1: Mortality rate for various dosage of Crude extract, Hexane fraction and Chloroform fraction](image)

We obtained Linear scale fitted curve was obtained in PoloPlus software. It can be observed that the Crude extract has the highest mortality rate among Hexane and Chloroform extract, while the lowest was obtained by chloroform extract.

The Crude obtained from the L. camara was found an effective insecticidal agent against the Phenococcus solonopsis. It is found highly toxic to Aphides (cotton mealy bug). The half of the larval mortality of aphides was observed at lower concentration of 0.016% of crude of extract of L. camara within 24-hours of exposure indicates the high toxicity of the product. Chandel et al. tested eight plant species under lab and field conditions. They found that L. camara at 2% extract caused 79.4% mortality of the cabbage aphid Brevicorine brassicae (Homoptera: Aphididae) after 72 hours in the field. Srivastava & Guleria (2003) found that the leaves of plant L. camera have shown mortality 22.16 % on Mustard Aphid (Lipaphis erysimi (Kalt)). The leaves and flowers of that L. camara after drying can be extracted with water and used to control many in insects including Helopeltis, aphids (Mamun and Ahmed, 2011).

\textit{Lantana camara} had mortality rate of 69.32±4.50 in 24 hours, 76.34±4.30 for 48 hour and 79.8±4.83 in 72 hours for the green peach aphid caused by the acetone plant extracts. (Madanat et al., 2017). L. camera show mortality of 1% extract shows 10.00 (14.99) in 24 hours; 20.00 (26.07) in 48 hours; 46.67 (43.07) in 72 hours on insect M. persicae and 16.67 (19.92) 24 hours 30.00 (32.29)48 hours 46.67 (42.99) 72 hours on B. brassicae (Yadav & Patel 2017).

\textbf{References}

