SURVEY ON THE INCIDENCE OF FUSARIUM WILT OF TOMATO INCITED BY FUSARIUM OXYSPORUM F.S.P. LYCOPERSICI (FOL) IN MAJOR TOMATO GROWING AREAS OF KRISHNAGIRI DISTRICT

K. Vignesh1, K. Rajamohan1, P. Balabaskar1, R. Anandan2 and R. Udhayakumar1
1Department of Plant Pathology, Faculty of Agriculture, Annamalai University, Annamalai Nagar – 608002, Tamilnadu, India
2Department of Biotechnology
Faculty of Agriculture, Annamalai University, Annamalai Nagar – 608002, Tamilnadu, India
E-mail: lakshmi5472@gmail.com
Corresponding author – Dr. K. Rajamohan, Assistant professor, Department of Plant Pathology
E-mail : rajamohan.pat@gmail.com

ABSTRACT
Tomato is one of the most important, commercial and widely grown vegetable crop in the world. It is affected by several fungal, bacterial and viral diseases. Among these Fusarium wilt caused by the fungus Fusarium oxysporum f.sp. lycopersici causes 30-40% yield loss. A survey was conducted to investigate the incidence and severity of Fusarium wilt incited by Fusarium oxysporum f.sp. lycopersici in ten major tomato growing areas of Krishnagiri district. The occurrence of wilt disease incidence ranged from 18 % to 49% was noticed. Plant showing typical symptoms were taken from 10 fields and identified based on symptom appearance as well as morphological characteristics. The result of the survey revealed that wide range of infection and severity of wilt disease were occurred in the major tomato growing areas in Krishnagiri district. Isolation of the pathogen associated with tomato wilt was made from the diseased tissues in roots and collar region of the plant on the Potato dextrose agar (PDA) medium. Fol1 recorded the maximum wilt incidence followed by Fol2 and the minimum wilt incidence was recorded by Fol5. The pathogenicity of the fungal pathogen was also proved after artificial inoculation of the tomato seedlings. Keywords: Survey, Tomato, Fusarium wilt, Fusarium oxysporum Fsp. lycopersici, Krishnagiri

INTRODUCTION
Tomato (Solanum lycopersicum L.) is one of the most cultivated and popular vegetable crop across the world (Pastor et al., 2012). It belongs to the Solanaceae family and it is the most important vegetable after Potato (Gondal et al., 2012). Tomato grows well in a relatively cool and dry climate, it is well adapted to all climatic zones around the globe. Tomato is used for consumption due to its high nutritive values, antioxidant and curative properties and it contains Vitamin A, Vitamin C and Vitamin E with 95.3% of Water, 0.07% Calcium and Niacin which have great importance in metabolic activities of humans (Sahu et al., 2012). In Tamil Nadu the area under tomato cultivation is 7.97 lakh ha with a production of 207.08 lakh tonnes (Anonymous 2018). In Krishnagiri district the area under tomato cultivation is 38.78 lakh ha with the production of 841.21 million tonnes (Dhivya et al. 2018).

Tomato plants are susceptible to various diseases caused by different agents such as Bacteria, Viruses, Nematode, Fungi and Abiotic factors (Sahu et al., 2013). Among the fungal diseases, Fusarium wilt is caused by Fusarium oxysporum f.sp. lycopersici and it causes economic loss of tomato production in world wide. F. oxysporum f.sp. lycopersici is a soil borne pathogen, persists in soil for about 8-10 years in the form of chlamydospores as resting structure (Prachi Singh et al. 2019). The fungus F. oxysporum f. sp. Lycopersici is exerting pressure on production losses between 30 to 40% and may even raise up to 80% if so, climatic conditions favour the growth of the fungus (Lukyanenko 1991; Nirmaladevi, 2016).

The symptoms of Fusariosis begin with a foliar chlorosis in a region of the plant and as the disease is established, the yellowing is observed in the majority of the plant, causing the wilt and later the death of the plant, without producing fruit or the fruit production is scarce (Baez-Valdez et al., 2010). The earliest symptoms appear with in 48 h after the entry of the pathogens. In the infected plants the leaves becomes yellow followed by dropping of leaves which occurs may be on one side of the plant or on both the sides of shoot (Mui-Yun, 2003b).

The fungus blocks the xylem vessels by invading the vascular tissues and reduces the movement of water and causes severe wilting. A lengthwise brown streaks or vascular discoulouration may be seen when the infected stem is cut open. This is the characteristic symptom and used for the identification of disease (Mui-Yun, 2003a). This
discolouration often extends far up the stem and is especially noticeable in a petiole scar. Sally et al. (2006) reported that the light vein clearing of young leaves followed by epinasty of old leaves appear in infected plants. The main symptoms of the disease include yellowing of lower leaves, browning of vascular tissues, wilting of plant, stunting and eventually death. A white or pink colour fungal growth may be noticed in the stem especially in the wet conditions (Ajigbola and Babalola, 2013). Browning of the vascular system, blocking in the stem especially in the wet conditions (Ajigbola and Babalola, 2013). Browning of the vascular system, blocking in the stem especially in the wet conditions (Ajigbola and Babalola, 2013).

Materials and Methods

Disease Survey

A rowing survey was under taken in ten different tomato growing areas of Krishnagiri district in Tamil Nadu. To assess the incidence of tomato wilt randomly 100 plants were selected from each field and the numbers of infected plants were counted and the mean wilt incidence was expressed in percentage. The percent disease incidence was calculated by using the formula (Mayee and Datar1986).

\[
\text{Disease Incidence\% (PDI) } = \frac{\text{Number of infested Plants}}{\text{Total number of Plants}} \times 100
\]

Completely wilted plants were collected to isolate the pathogen along with rhizospheres oil to isolate the antagonistic organisms.

Isolation and identification of Fusarium oxysporum f.sp. Lycopersici

Typical wilt symptom showing tomato plants were collected from different tomato growing areas of Krishnagiri district and used for isolation of pathogen. The infected root and stem portions were washed in tap water and the tissues showing vascular brown colour discoloration are cut into small pieces. They were then surface sterilized in 1% Sodium hypochlorite (NaOCl₂) solution for 30 sec. To remove the traces of Sodium hypochlorite solution the tissues were washed thrice with sterile distilled water and the pieces were transformed to the Petri plates containing sterilized potato dextrose agar (PDA) and incubated at room temperature(28 ± 2°C) for 5-7 days. The pure culture of pathogen is obtained by single hyphal tip method (Rangaswami, 1972). The pathogen F. oxysporum f.sp. lycopersici was identified with the help of descriptions given by Subramanyam (1970) and Booth (1971).

Morphological and cultural characters of Fusarium oxysporum f.sp. Lycopersici

Ten isolates of Fusarium spp obtained were compared for variation in respect of morphological and cultural characters on solid medium. Ten days old culture of each isolate was separately inoculated and incubated at 28 ± 2°C for seven days. After the incubation period, fungal radial growth, micro & macro conidia population, colony characters, sporulation and size of micro, macroconidia and chlamydospores were measured. The characters were compared with those described by Booth (1971).

Pathogenicity Test

Five kg of garden land soil was filled in the earthen pots with uniform size of 30cm diameter. The garden land soil was sterilized in an autoclave at 15 lbs pressure for 1-4 hrs/cm² on two successive days and inoculated by mixing the freshly prepared Fusarium inoculums (multiplied on sand maize medium) at the rate of 50g/kg of soil (Muthusamy, 1972). Two tomato seedlings were planted in each pot and replicated three times. The pots were maintained in green house by regular, uniform and judicious watering and then pots were constantly observed for development of the disease symptoms. The percent disease incidence of each isolate was recorded after 60 days after inoculation.

Scanning Electron Microscopy

Actively growing fungal culture was fixed at overnight for 28°C in 0.05M phosphate buffer containing 4% glutaraldehyde. On the next day, fungal mat was washed three times with phosphate buffer and dehydration of the sample were done using ethanol for 15 minutes. Then, the fixed and dehydrated samples were dried with CO₂ for 5 minutes and were fixed on aluminium stubs and sputter coated with carbon polaron E-500 spattered coated and immediately observed under scanning electron microscope at 15 KV.

Result and Discussion

An extensive survey conducted in major tomato growing areas of Krishnagiri district in different locations during the year 2019 revealed, the endemic nature of the disease with Fusarium wilt incidence ranging from 12 to 49% (Table 1). The survey revealed that, the incidence and severity of the disease varied from locality to locality. Among the different locations of Krishnagiri district surveyed for tomato Fusarium wilt incidence, Uthangarai registered the maximum incidence of the disease (49.47%) followed by Thippampatti with (43.25%), Kollanaikanoor with (38.87%) and the minimum Fusarium wilt incidence of (12.56%) was recorded in Arasur. The variation in the extent of the disease incidence might be due to the prevalence of the isolates of the pathogen differing in their virulence. Similar to the present study Jayanta et.al. (2018) conducted a survey in four districts of North Eastern Karnataka and the wilt incidence was noticed in all locations surveyed with a range of 0.83 to 38.66 percent attributed by specific variety.

Fusarium oxysporum f.sp. lycopersici was isolated from the diseased samples of Tomato plants in fresh PDA plates. The isolates of F. oxysporum f.sp. lycopersici showed variation with respect to phenotypic characters exclusively the colour of isolates, varied from white to pale pink and pinkish colour. In Present study, Most of the isolates produced fluffy to moderately fluffy cottony aerial mycelium other then the isolate Fol₂ which produced thin flat mycelium varied from other isolates (Table 2). Rajendran et al. (2018) reported that the pathogen produced different colony colors viz., Light pink, Pink, Dark pink, Creamy white, pale white with pink and the mycelial growth pattern showed two different pattern namely adherent smooth and fluffy growths.

All the F. oxysporum f.sp. lycopersici isolates varied in their ability to produce micro and macro conidia on PDA. The isolate F. oxysporum f.sp. lycopersici (Fol₁) produced the maximum conidia population of 2.7×10⁶ ml (×10⁶). The minimum conidial population of 0.5×10⁶ (×10⁶) was produced by the isolate Fol₇ isolated from Arasur (Table 2). Among the
isolates of *F. oxysporum* f.sp. *lycopersici* the maximum mycelia dry weight (225.45mg) was recorded by the isolate Fol3. In the present studies the isolates produced micro and macro conidia with populations ranging from 0.5 x 10^6 to 2.7 x 10^6 conidia ml^{-1}. The minimum length and width of micro and macro conidia observed was 5.63 x 3.54 µm, 20.63 x 3.12 µm respectively. The same isolate Fol3 recorded the maximum length and width of micro, macro conidia and chlamydospore with 10.05x4.56 µm, 29.25x4.78 µm and 7.50-7.90 µm respectively. The minimum mycelial dry weight (126.47mg) was produced by the isolate Fol6. The isolates Fol6 and Fol8 not able to produced micro and macro conidia (Table 3).The isolates produced the micro conidia with no septation to 1 septation and macro conidia produced with an average 3-4 septations. The different isolates showed smaller to high degree of variation within different parameters like size of microconidia, Macroconidia and Chlamydospores. In past studies, the size of micro conidia ranged from 3-4 x1-2 µm to 11-10 x1-2 µm with 0-1 septate and size of macroconidia varied from 13-15x3-4µm to 24-26x4-5µm3-4 septate (Padvi *et al.* 2018).

The data depicted in table 4 revealed that varied levels of pathogenicity with difference in isolates. Among the ten isolates of *F. oxysporum* f.sp. *lycopersici* collected from different tomato growing areas of Krishnagiri district, the isolate (Fol3) collected from Uthangarai was found to be more virulent and recorded the maximum incidence of 65.52% per cen followed by Fol4 (62.17%) collected from Thippampatti. The isolate Fol10 collected from Arasur was the least virulent which recorded the minimum (25.68%) *Fusarium* wilt disease incidence. Similarly Rajendran *et al.* (2018) mentioned that the *F. oxysporum* f.sp. *lycopersici* isolates produced significant symptoms from 47 days after transplanting. The percent wilt incidence ranged from 48 to 100 between the isolates. This type of study was supported by Houssien *et al.* (2010) who noticed 69.44% disease incidence of *Fusarium* wilt under pot culture studies.

Table 1: Survey on the incidence of *Fusarium* wilt of tomato incited by *Fusarium oxysporum* f.sp. *lycopersici* (Fol) in major tomato growing areas of Krishnagiri district

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>IsolateName</th>
<th>Location</th>
<th>Soil type</th>
<th>Variety</th>
<th>Stage of the crop</th>
<th>Disease Incidence (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fol1</td>
<td>Hamumantheertham</td>
<td>Clay loam</td>
<td>CO 2</td>
<td>Fruiting</td>
<td>30.54 ± 3.71 (33.54)</td>
</tr>
<tr>
<td>2</td>
<td>Fol2</td>
<td>Irumathur</td>
<td>Sandy Loam</td>
<td>Local</td>
<td>Flowering</td>
<td>34.64 ± 3.36 (36.05)</td>
</tr>
<tr>
<td>3</td>
<td>Fol3</td>
<td>Uthangarai</td>
<td>Sandy loam</td>
<td>PKM 1</td>
<td>Fruiting</td>
<td>49.47 ± 4.11 (44.69)</td>
</tr>
<tr>
<td>4</td>
<td>Fol4</td>
<td>Thippampatti</td>
<td>Clay</td>
<td>CO 1</td>
<td>Flowering</td>
<td>43.25 ± 3.98 (41.12)</td>
</tr>
<tr>
<td>5</td>
<td>Fol5</td>
<td>Puthoor</td>
<td>Sandy loam</td>
<td>CO 2</td>
<td>Fruiting</td>
<td>18.15 ± 2.17 (25.21)</td>
</tr>
<tr>
<td>6</td>
<td>Fol6</td>
<td>Arasur</td>
<td>Clay loam</td>
<td>COTH1</td>
<td>Fruiting</td>
<td>12.56 ± 2.85 (20.75)</td>
</tr>
<tr>
<td>7</td>
<td>Fol7</td>
<td>Kollanaikooor</td>
<td>Clay</td>
<td>Local</td>
<td>Flowering</td>
<td>38.87 ± 3.20 (38.56)</td>
</tr>
<tr>
<td>8</td>
<td>Fol8</td>
<td>Mittapalli</td>
<td>Red soil</td>
<td>PKM 1</td>
<td>Fruiting</td>
<td>27.26 ± 2.40 (31.47)</td>
</tr>
<tr>
<td>9</td>
<td>Fol9</td>
<td>Kodamandapatti</td>
<td>Clay loam</td>
<td>CO 2</td>
<td>Fruiting</td>
<td>22.45 ± 2.70 (28.28)</td>
</tr>
<tr>
<td>10</td>
<td>Fol10</td>
<td>Mathur</td>
<td>Sandy clay loam</td>
<td>PKM 1</td>
<td>Flowering</td>
<td>29.78 ± 3.10 (32.88)</td>
</tr>
</tbody>
</table>

* Mean of three publications
* In a column, means followed by a common letter are not significantly differ at 5% level by Duncan’s multiple range test (DMRT)

Table 2: Isolation and cultural characteristics of various isolates of *Fusarium oxysporum* f.sp. *lycopersici* (Fol) from major tomato growing areas of Krishnagiri district

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Isolates</th>
<th>Locality</th>
<th>Cultural characteristics</th>
<th>Mycelial growth (mm)</th>
<th>Conidial population/ml (×10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Fol1</td>
<td>Hamumantheertham</td>
<td>Moderate Aerial mycelium cottony white to pink colour mycelium</td>
<td>86.76^{bc}</td>
<td>1.9^{e}</td>
</tr>
<tr>
<td>2</td>
<td>Fol2</td>
<td>Irumathur</td>
<td>Aerial with white mycelium</td>
<td>87.56^{ab}</td>
<td>2.1^{d}</td>
</tr>
<tr>
<td>3</td>
<td>Fol3</td>
<td>Uthangarai</td>
<td>Profuse fluffy cottony growth with white to pink mycelium</td>
<td>90.00^{a}</td>
<td>2.7^{a}</td>
</tr>
<tr>
<td>4</td>
<td>Fol4</td>
<td>Thippampatti</td>
<td>Moderate aerial mycelium with white to pink mycelium</td>
<td>89.23^{b}</td>
<td>2.5^{b}</td>
</tr>
<tr>
<td>5</td>
<td>Fol5</td>
<td>Puthoor</td>
<td>Moderate fluffy cottony growth with white mycelium</td>
<td>79.87^{d}</td>
<td>0.8^{i}</td>
</tr>
<tr>
<td>6</td>
<td>Fol6</td>
<td>Arasur</td>
<td>Moderate aerial mycelium with slightly pink mycelium</td>
<td>74.35^{e}</td>
<td>0.5^{l}</td>
</tr>
</tbody>
</table>
Survey on the incidence of *Fusarium* wilt of tomato incited by *Fusarium oxysporum* f.sp. *lycopersici* (FOL) in major tomato growing areas of Krishnagiri district

<table>
<thead>
<tr>
<th>Sl. No.</th>
<th>Isolates</th>
<th>% disease incidence</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>Fol1</td>
<td>49.23<sup>e</sup> (44.55)</td>
</tr>
<tr>
<td>2.</td>
<td>Fol2</td>
<td>52.46<sup>d</sup> (46.41)</td>
</tr>
<tr>
<td>3.</td>
<td>Fol3</td>
<td>65.52<sup>a</sup> (54.04)</td>
</tr>
<tr>
<td>4.</td>
<td>Fol4</td>
<td>62.17<sup>b</sup> (52.04)</td>
</tr>
<tr>
<td>5.</td>
<td>Fol5</td>
<td>29.49<sup>f</sup> (32.89)</td>
</tr>
<tr>
<td>6.</td>
<td>Fol6</td>
<td>25.68<sup>j</sup> (30.44)</td>
</tr>
<tr>
<td>7.</td>
<td>Fol7</td>
<td>58.42<sup>e</sup> (49.87)</td>
</tr>
<tr>
<td>8.</td>
<td>Fol8</td>
<td>43.25<sup>g</sup> (41.12)</td>
</tr>
<tr>
<td>9.</td>
<td>Fol9</td>
<td>36.71<sup>n</sup> (37.29)</td>
</tr>
<tr>
<td>10.</td>
<td>Fol10</td>
<td>47.83<sup>f</sup> (43.75)</td>
</tr>
</tbody>
</table>

* Mean of three publications

* In a column, means followed by a common letter are not significantly differ at 5% level by Duncan’s multiple range test (DMRT)
Plate 1. Infection of *Fusarium oxysporum* f. sp. *lycopersici* in the field

Plate 2. Symptoms of *Fusarium* wilt

- Vascular discoloration
- Yellowing of leaves
Survey on the incidence of *Fusarium* wilt of tomato incited by *Fusarium oxysporum* f.sp. *Lycopersici* (FOL) in major tomato growing areas of Krishnagiri district

Plate 3. Scanning Electron Microscopic (SEM) observation of *Fusarium oxysporum* f.sp. *lycopersici*

(Microconidia, Macroconidia, Chlamydospores)

![SEM images of Microconidia, Macroconidia, Chlamydospores](image)

Microscopic observation

![Microscopic images of Microconidia, Macroconidia, Chlamydospores](image)
Plate 4. Different isolates of *Fusarium oxysporum f.sp. lycopersici*

Plate 5. Pathogenicity of *Fusarium oxysporum f.sp. lycopersici*
Survey on the incidence of Fusarium wilt of tomato incited by Fusarium oxysporum f.sp. Lycopersici (FOL) in major tomato growing areas of Krishnagiri district

References

Rangaswami, G. (1972). Disease of crop plants in India. Prentice Hall of India Pvt. Ltd, New Delhi 520
