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ABSTRACT 

Many types of physical models have been developed for runoff estimation with successful results. However, accurate 
estimation of runoff remains a challenging problem owing to the lack of field data and the complexity of its 
hydrological process. In this paper, a machine learning method for runoff estimation is presented as an alternative 
approach to the physical model. Various types of input variables and artificial neural network (ANN) architectures 
were examined in this study. Results showed that a two-layer network with the tansig activation function and the 
Levenberg–Marquardt learning algorithm performed the best. For this architecture, the most effective input vector 
consists of a catchment perimeter, canal length, slope, runoff coefficient, and rainfall intensity. However, results of 
multivariate analysis of variance indicated the significant interaction effect of input data and the ANN architecture. 
Thus, to create a suitable ANN model for runoff estimation, a systematic determination of the input vector is 
necessary.  
Keywords: Urban catchment, runoff estimation, artificial neural network, machine learning 

  

 

Introduction 

Storm water and runoff management are common 
issues in most urban catchments (Whitford, Ennos et al., 
2001; Zhang, Xie et al., 2012; Kumar, Arya et al., 2013). The 
hydrological process in urban catchments is complicated 
(Freni, Mannina et al., 2009) and involves a complex 
network of impervious and vegetative surfaces, canals, 
sewerages, pipelines, etc. (Whitford, Ennos et al., 2001; 
Zhang, Xie et al., 2012; Kumar, Arya et al. 2013). Most 
urban catchments are ineffective for hydrometric measuring 
instruments.  

The fundamental part of all storm-water runoff 
management models is the accurate estimation of surface 
runoff (Chen and Adams, 2007). Runoff forecasting is 
essential for planning, designing, and operation of water 
resource projects (Reddy, Babu et al.). During the past few 
decades, runoff estimation has greatly benefitted from 
conceptual modeling, which retains some of the physical 
laws in its mathematical formulations (Elshorbagy, 
Simonovic et al., 2000). However, these models rely on a 
large amount of input data (Elshorbagy, Simonovic et al., 
2000). Therefore, producing output from them is costly 
(Elshorbagy, Simonovic et al., 2000), and a high uncertainty 
exists in the results (Freni, Mannina et al., 2009). 

In cases of limited data and process complexity, using 
machine learning techniques is a suitable approach (Chae, 

Horesh et al., 2016). The artificial neural network (ANN) is a 
subgroup of machine learning that has received significant 
attention in the context of estimation problems (Khayatian 
and Sarto, 2016). Over the past few decades, ANN models 
have become very widely used in the fields of hydrology, 
water resources, and watershed management (Chavoshi, 
Sulaiman et al., 2013, Orimi, Farid et al., 2015).  

Elshorbagy et al. (2000), for example, studied the 
applicability and usefulness of ANN models in runoff 
prediction (Elshorbagy, Simonovic et al., 2000). By 
developing various ANN-based models in the Red River 
Valley, Canada and comparing them with traditional 
techniques, they concluded that ANN-based models yield 
better results and have a better prediction ability. Similarly, 
Ahmad and Simonovic (2001) used a feed-forward ANN 
with a back-propagation algorithm for predicting the peak 
flow, timing, and shape of a runoff hydrograph of the Red 
River in Manitoba, Canada (Ahmad and Simonovic, 2001). 

To analyze the performance of ANN models for 
forecasting short-term daily flow, Pulido-Calvo and Portela 
(2007) applied a feed-forward neural network in large 
Portuguese watersheds (Pulido-Calvo and Portela 2007). 
They claimed ANN models can predict watershed flow using 
insufficient data. Reddy et al. (2008) modeled the rainfall-
runoff process using empirical models and compared it with 
ANNs (Reddy, Babu et al.). They used the data on the 
Godavari Basin of India and explored the ANN performance 
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improvement by combining it with empirical methods. Lee et 

al. (2010) built two types of ANN models for prediction of 
regional runoff utilization and compared their reliabilities 
(Lee, Lin et al. 2010). A network with a radial base function 
using the Gaussian function showed better stability than a 
neural network model using back-propagation.  

Chiang et al. (2004) studied the stability and 
effectiveness of two ANN types: static feed-forward and 
dynamic feed-forward (Chiang, Chang et al. 2004). They 
applied various ANN architectures to the Lan-Yang River, 
Taiwan and showed that both static and dynamic neural 
networks yielded reasonable results. However, the static-feed 
forward type showed better performance than the dynamic 
feed-forward type if the data were sufficient. In the case of 
insufficient training data, the dynamic feed-forward ANN 
demonstrated significantly better performance. Meanwhile, 
Chavoshi et al. (2013) applied ANN for flood estimation in 
the southern strip of the Caspian Sea watershed (Chavoshi, 
Sulaiman et al., 2013). They compared their results with a 
multiple regression model and showed the ANN model to be 
a powerful tool for resolving the hydrological problem 
complexity. Among the different types of ANN architectures, 
multilayer feed-forward back propagation with the 
Levenberg–Marquardt resulted in the best performance. 

A broad review of literature in water resource 
management and hydrology indicates the following points. 
(1) Several studies were conducted to investigate the 
applicability of ANNs to forecast runoff in different 
watersheds and to compare them with traditional physical 
models. Most of these studies showed the acceptable 
performance of ANN models, particularly at watersheds with 
insufficient data. (2) In addition, exploring the ANN 
architecture with the best performance has been the focus of 
researchers. Accordingly, various ANN structures were 
designed and tested through changing neural network 
components, including several neurons and layers, transform 
functions, learning methods, and network types. Although a 
feed-forward perceptron network was recommended by many 
researchers, there is no consensus on network structure. (3) 
Few works have focused on studying the effect of the input 
vector on ANN model performance for runoff estimation. (4) 
Moreover, few studies have focused on the application of 
ANNs in urban watersheds. Particularly, owing to the 
complexity of the hydrological process in urban catchments 
and the lack of field data (Bertrand-Krajewski 2007), this 
research area requires more attention.  

The aim of this study is thus to determine the ANN 
architectures that result in the most accurate performance for 
urban catchment estimation. To this end, a total of 24 ANN 
models were proposed and tested. The performances of the 
proposed models were systematically compared. In addition, 
this study served to explore the interaction effect of input 
vectors on ANN architecture.  

Artificial neural network  

An ANN is an information-processing system that 
shares certain performance characteristics with biological 
neural networks (Fausett 1994). An ANN consists of a large 
number of interconnected computational nodes, called 
neurons, working together (Sethi, Kumar et al. 2010). 
Generally, a neural network consists of three layers: input, 
middle (hidden), and output layers, which are fully 
connected. The input layer represents entries; the output layer 

represents the corresponding values. In the middle layers, 
there exist several artificial neurons comprised of the 
activation function (weights and biases to calculate output 
values), as well as the transfer function for propagating 
values to subsequent layers.  An important characteristic of 
the ANN is its ability to learn. Learning is the process by 
which a neural system acquires the ability to carry out certain 
tasks by adjusting its internal parameters according to some 
learning scheme (Karayiannis and Venetsanopoulos 2013). 

A neural network is characterized by its architecture, 
which represents the pattern of connections among neurons, 
its method of determining the connection weights, and the 
activation function (Fausett, 1994). A typical ANN is the 
multilayer perceptron (MLP). In MLP, the direction of 
information flow is feed-forward (where the information 
flows from the input nodes to output nodes). The learning 
process is supervised with the back-propagation algorithm. 
Many studies have shown the ability of MLP to solve 
complex and diverse problems (Haykin, Haykin et al., 2009). 

In addition to the configuration of layers and the 
training algorithm, the number of neurons in the middle layer 
is significant to ANN performance. An ANN with too few 
neurons in the middle layer is not capable of making an 
accurate output, while an ANN with too many neurons in the 
middle layer is over-fitted and has poor predictive 
performance (Chae, Horesh et al., 2016). To determine the 
number of hidden layers and neurons, either trial-and-error or 
intelligent methods can be used (Najafi-Marghmaleki, 
Khosravi-Nikou et al. 2016). 

Study area 

The area selected for this study is located in the 
southwest of Isfahan, Iran, encompassing 69 km2. It is 
located in a low rainfall zone, with the average annual 
precipitation of 127.2 mm over the past two decades. To the 
north and northeast lies the Zayanderood River. To the west, 
it is surrounded by a residential district. To the east and 
southwest is an area of elevated terrain. It is located between 
51˚39´and 51◦43´ E longitude and 32◦35´ to 32◦38´ N 
latitude (Fig. 1). The study area is characterized by a diverse 
topography with an overall slope of 2.5%. The land slope in 
the northern direction is steep toward the Zayanderood River; 
the slope in the western direction is moderate. Runoff canals 
flowing through urban areas lead to the Zayanderood River. 

 

Fig. 1 : Area study. 
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The study area was divided into two parts: urban and 
suburban watersheds. The suburban catchment consisted of 
six sub-watersheds (CO-1 through CO-6); the urban 
catchment included 35 sub-watersheds (CI-1 through CI-35). 
Since the runoff in CO-6 flowed out of the study area, this 
sub-watershed was omitted. For each sub-watershed in the 
urban catchment, the physiographic parameters (area, 
perimeter, canal length, slope) and time of concentrations 
were calculated. The runoff coefficient for different land was 
obtained from American Society of Civil Engineering 
(ASCE). The rainfall-runoff data from 2000 to 2016 were 
used for model development.  

Methodology 

The methodology adopted in this study consisted of two 
phases. Phase 1 was dedicated to model selection and input 
vector analysis. In this phase, through changing network 
components, including the number of neurons, transform 
functions, learning methods, and hidden layers, various ANN 
models were developed and evaluated. The interaction effect 
of the input vector on the ANN structure was analyzed by 
using multivariate analysis of variance (MANOVA) 
techniques. The data set for MANOVA was generated by a 
cross-validation procedure. The second phase involved the 
applicability of ANN models for runoff estimation. For this 
purpose, the ANN model outputs were compared with the 
SWMM results. By implementing MANOVA, the significant 
differences between these models were studied. A detailed 
description of the methodology is illustrated in Fig. 2.  

 

ANN architecture selection 

An MLP artificial neural network with a back 
propagation algorithm was used to estimate the runoff in the 
urban watersheds. MLP is a prominent ANN architecture that 

is used in many water resource and hydrological applications 
(Braddock, Kremmer et al. 1998, WANG, Traore et al. 
2008).  

In many nonlinear problems, use of a single hidden 
layer is sufficient (Funahashi 1989, Hornik, Stinchcombe et 

al. 1989, Sreekanth, Sreedevi et al. 2011). Furthermore, 
studies have shown that using more than two hidden layers 
may not produce considerable improvement (Patuwo, Hu et 

al. 1993). In this study, we examined both a one-layer and 
two-layer network. To determine the number of neurons in 
the hidden layers, we applied the following rules. (1) The 
number of neurons in the first layer should not be exceeded 
by three times the number of input variables. (2) The number 
of neurons in the second hidden layer should be limited to 
two times the number of neurons in the first layer. 

The linear activation function and logistic sigmoid 
function are the most widely used functions in the output 
layer and hidden layer, respectively (Sivakumar, 
Jayawardena et al. 2002). A study by Yonaba et al. (2010) 
showed that the tangent sigmoid is the most pertinent transfer 
function for stream-flow forecasting (Yonaba, Anctil et al. 
2010). They found that a nonlinear transfer function in the 
output layer failed to improve performance value. To obtain 
the best ANN architecture, both the logistic sigmoid function 
and tangent sigmoid are considered in this study. 

Learning method selection  

Various ANN learning algorithms exist, such as the 
scaled conjugate gradient (SCG), Levenberg–Marquardt 
(LM), and resilient back-propagation (Ruck, Rogers et al. 
1990). Based on performance statistics for back-propagation 
algorithms, the LM is the best (Affandi and Watanabe 2008). 
In this research, we used both LM and the Bayesian 
regularization (BR) algorithm in the training procedure. 

Input vector selection  

In contrast to statistical methods, ANNs are categorized 
into various data-driven approaches (Chakraborty, Mehrotra 
et al. 1992). Therefore, selecting a set of appropriate input 
vectors is a critical step in the process of ANN model 
development (Zealand, Burn et al. 1999, Dogan, Demirpence 
et al. 2008). The input vector must be uncorrelated, free of 
noise, and have a significant relationship with the output 
vector (Bowden, Dandy et al. 2005). Data-driven approaches 
can usually determine the critical input vector; nonetheless, 
this approach is not efficient (Bowden, Dandy et al. 2005). 
By increasing the number of variables, computational 
complexity, learning process difficulty, low accuracy, and 
poor performance will result (Back and Trappenberg 1999, 
Maier and Dandy 2000, Bowden, Dandy et al. 2005). 

Despite the importance of input vector determination on 
ANN performance, Maier and Dandy (2000) claimed that, in 
most water-resource ANN applications, minimal attention is 
given to the task of selecting appropriate model input (Maier 
and Dandy 2000). In this study, we employed a combination 
of input determination methods, including the “prior 
knowledge” method (Bowden, Dandy et al. 2005) and 
“saliency analysis” method (Abrahart, See et al. 2001) to 
select the appropriate input vector.  

According to these approaches, two vectors of 
hydrological variables are defined. With vector 1, the input 
variables consist of the catchment area, concentration time, 
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rainfall intensity, and runoff coefficient. As in the 
hydrological watershed, the variable time of concentration 
can be estimated by experimental approaches. Thus, with the 
second input vector, the concentration time was substituted 
by affecting the variables consisting of the catchment 
perimeter, channel length, slope, runoff coefficient, and 
rainfall intensity. Accordingly, the relationships among these 
variables were explored and the urban runoff value was 
estimated. 

Data preparation 

Since the acceptable data range for the sigmoid 
activation function is mostly in the range of −1 to 1, the 
normalization must be performed to place input data in the 
range of −1 to 1 before applying the data to ANN. For 
normalization, the following equations are used: 

   (1)
    

where x is the original data for each input variable, Min X  
and Max X are respectively the minimum and maximum 
value of X, and XN is the normalized value. For operation of 
an ANN, it is usually required to divide the dataset into three 
subsets for the purpose of training, validation, and testing. 
Training handles the weight values of the network. During 
the training phase, approximately 75% of the whole dataset is 
frequently fed to the network until the acceptable weight 
values are determined. The purpose of validation is to ensure 
the proper training and to avoid over-fitting or over-training. 
A total of 12.5% of the dataset was chosen for validation. For 
the final evaluation of the ANN performance, the remaining 
12.5% of the dataset was used.  

Evaluation criteria 

To assess ANN performance during training, validation, 
and testing, two evaluation measures were applied. A mean 
squared error (MSE) is one of the most commonly used 
performance measures in hydrological modeling 
(Elshorbagy, Simonovic et al., 2000). The other index used 
to evaluate the correlation between observed and predicted 
runoff was the coefficient of determination, R2. The formulas 
for MSE and R2 are as follows: 

    (2) 

                (3) 

                      (4)

       

where  denotes the observed (actual) value of runoff,  is 

the estimated value, and  the number of observations. 

Results and Discussion 

To determine the appropriate ANN configuration for 
obtaining satisfactory results, various ANN models with two 
input vectors were investigated. Each model was developed 
by using different network model parameters, such as 
learning algorithms (LM, BR), activation functions (logsig, 
radbas, tansig), numbers of hidden layers (one and two), and 
four to nine neurons in the hidden layers. These models were 
trained 84 times and the best performances were 
documented.  

 

Results for input vector 1 

Table 1 illustrates the values of statistical indicators for 
a total of six ANN models with input vector 1 during training 
and testing periods. As mentioned earlier, input vector 1 
consists of variables, including catchment area, concentration 
time, rainfall intensity, and runoff coefficient. The 
differences between the models related to the number of 
neurons, the activation function form, and training method. 
The results from the model performances indicated that the 
single-layer network with five neurons—when the activation 
function was radbas, and the training algorithm was LM—
performed the best. This network resulted in an R2 of 0.853 
for the testing dataset; an MSE of 0.96 m6 for the testing 
dataset, and 0.6 m6 for the training dataset, respectively. 

To investigate the influence of the hidden layer on 
network performance, other combinations of ANN models 
with input vector 1 were developed. In these models the 
number of layers was increased by two, and different 
network parameters, including the number of neurons, 
activation function forms, and training algorithms were 
examined. For input vector 1, the results from the model 
performance (Table 2) indicated that, when the number of 
hidden layers increased by two, a network consisting of five 
and eight neurons with logsig and tansig activation functions, 
respectively, performed the best. In this combination, the best 
training algorithm was LM. This network resulted in an R2 of 
0.957 for the testing dataset, an MSE of 0.53 m6 for the 
testing dataset, and 0.43 m6 for the training dataset, 
respectively. 

With input vector 1, a comparison of the statistical 
indicators displayed better performance for the network with 
two hidden layers. This model returned an MSE of 2.41 m6, 
while the network with a single layer returned an MSE of 
4.96 m6. Moreover, in terms of the coefficient of 
determination, the network with two hidden layers 
demonstrated better performance. It was observed that the 
network with a single hidden layer returned 0.432, while the 
network with two hidden layers returned 0.704.  

Results for input vector 2 

Table 3 illustrates the values of statistical indicators for 
a total of six ANN models with input vector 2 during training 
and testing periods. As mentioned earlier, input vector 2 
consisted of the variables of the catchment perimeter, 
channel length, slope, runoff coefficient, and rainfall 
intensity. Results of the model performance indicated that a 
single-layer network with seven neurons—when the 
activation function was logsig and the training algorithm was 
LM—performed the best. This network resulted in an R2 of 
0.886 for the testing dataset, an MSE of 0.69 m6 for the 
testing dataset, and 0.11 m6 for the training dataset, 
respectively. 

To investigate the influence of the hidden layer on 
network performance, other combinations of ANN models 
with input vector 2 were developed. In these models, the 
number of layers was increased by two, and different 
network parameters, including the number of neurons, 
activation function forms, and training algorithms were 
examined. For input vector 2, the model performance results 
(Table 4) indicated that, when the number of hidden layers 
increased by two, the performances of the first three ANN 
architectures were very similar. However, among the six 
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ANN models, as outlined in Table 4, the network consisting 
of eight and nine neurons with tansign activation functions in 
both layers performed the best. In this architecture, the best 
training algorithm was LM. This network resulted in an R2 of 
0.987 for the testing dataset, an MSE of 0.05 m6 for the 
testing dataset, and 0.002 m6 for the training dataset, 
respectively. 

As outlined in Table 5, a comparison of the proposed 
network performances indicates the following. (1) Input 

vector 2 provides better performance for runoff estimation of 
urban watersheds. (2) Increasing the number of hidden layers 
is often helpful for improving the runoff estimation in an 
urban catchment. (3) Two hidden layers with eight and nine 
neurons, respectively, and the tansig activation function in 
both layers, displays the best performance. The Mean Square 
Error (MSE), Sum Square error (SSE), and R2 observed for 
this network architecture are 0.05 m6, 0.314 m6, and 0.987. 

 

Table 1 : Performances of different ANN models with a one-layer network and input vector 1 

Validation Training Testing Activation 

function 

No. of 

Neurons 

Training 

Method MSE MSE MSE R2 SSE 

Logsig 6 LM 1.21 0.9 1.63 0.537 255.9 

Radbas 5 LM 1.32 0.6 0.96 0.853 150.7 

Tansig 7 LM 1.16 1.1 1.65 0.668 259.1 

Logsig 7 BR 4.48 3.95 7.53 0.257 1182 

Radbas 7 BR 1.77 1.66 1.76 0.255 276.3 

Tansig 4 BR 4.29 3.52 16.23 0.025 2548 
 

Table 2 : Performances of different ANN models with a two-layer network and input vector 1 

Validation Training Testing Activation 

function 

Layer 1 

Activation 

function 

Layer 2 

No. of 

Neurons 

Layer 1 

No. of 

Neurons 

Layer2 

Training 

Method MSE MSE MSE R2 SSE 

tansig logsig 5 8 LM 0.56 0.43 0.53 0.957 83.21 

tansig radbas 7 8 LM 0.63 0.41 1.01 0.806 158.6 

tansig tansig 7 10 LM 0.29 0.28 0.71 0.918 111.5 

tansig logsig 7 9 BR 2.47 1.92 8.81 0.552 1383 

tansig radbas 7 10 BR 1.34 1.18 1.86 0.442 292 

tansig tansig 6 6 BR 2.03 1.58 1.59 0.547 249.6 
 

Table 3 : Performances of different ANN models with a one-layer network and input vector 2 

Validation Training Testing Activation 

function 

No. of 

Neurons 

Training 

Method MSE MSE MSE R2 SSE 

logsig 7 LM 0.17 0.11 0.69 0.886 108.33 

radbas 7 LM 0.98 0.69 2.27 0.744 356.39 

tansig 7 LM 0.34 0.26 1.17 0.803 183.69 

logsig 9 BR 1.63 1.35 1.34 0.694 210.38 

radbas 9 BR 1.33 0.75 1.78 0.538 279.46 

tansig 5 BR 1.87 1.54 2.29 0.438 359.53 
 

Table 4 : Performances of different ANN models with a hidden two-layer network and input vector 2 

Validation Training Testing Activation 

function 

Layer 1 

Activation 

function 

Layer 2 

No. of 

Neurons 

Layer 1 

No. of 

Neurons 

Layer2 

Training 

Method MSE MSE MSE R
2
 SSE 

tansig logsig 8 7 LM 0.05 0.002 0.07 0.997 0.314 

tansig radbas 9 9 LM 0.05 0.001 0.09 0.986 0.157 

tansig tansig 8 9 LM 0.013 0.002 0.05 0.987 0.314 

tansig logsig 9 11 BR 1.11 0.98 3.14 0.621 153.86 

tansig radbas 9 12 BR 1.26 1.05 3.94 0.696 164.85 

tansig tansig 9 9 BR 1 0.95 0.92 0.723 149.15 

 
Table 5 : Comparison of the performances of the four best fitted networks 

Testing Input 

Combination 
Hidden layers Training Method 

MSE R
2
 SSE 

Vector 1 1 
radbas(5) 
@LM * 

0.96 0.853 150.7 

 2 
tansig(5) logsig(8) 

@LM ** 
0.53 0.957 83.21 

Vector 2 1 
logsig(7) 

@LM 
0.69 0.886 108.33 

 2 
tansig(8)-tansig (9) 

@LM 
0.05 0.987 0.314 
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Input vector interaction effect on ANN architecture 

To determine whether the input vector and ANN 
architecture (e.g., learning algorithm, transfer function) have 
a significant effect on network performance, a two-way 
MANOVA was used. An experiment was thus conducted in 
which input vector 1 and input vector 2 were exposed to a 
combination of learning methods and transfer functions. The 
performance data were generated using ten-fold cross 
validation. The dataset was randomly divided into ten parts. 
Each part was held out in turn, and the network was trained 
on the remaining nine-tenths. Then, its performance indexes 
(MSE and R2) were calculated on the holdout set. The 
network was executed a total of ten times on different 
training sets. Finally the ten performance indexes were 
averaged to yield a performance estimate. A two-way 
MANOVA was performed by SPPS for a one-layer and two-
layer ANN, respectively. The overall conclusions are 
outlined below. 

• In both networks (one-layer ANN and two-layer ANN), 
the multivariate effect of the ANN architecture was 
significant (P< 0.05). Thus, the ANN architectures 
differed with respect to ANN performance indexes.  

• In both networks (one-layer ANN and two-layer ANN), 
the multivariate effect of the input vector was also 
significant (P< 0.05). Therefore, the input vectors 
differed with respect to ANN performance indexes. 

• In both networks (one-layer ANN and two-layer ANN), 
the F-ratio (26.73) indicated that the interaction effect of 
the input vector and network architecture was 
statistically significant at an alpha 0.05. Therefore, the 
architecture performance was a function of the input 
vector, and input vector changes engendered significant 

differences in ANN performance with particular 
architectures. Accordingly, in an urban catchment in 
which the hydrological process is complex and data are 
not sufficient, the runoff estimation requires 
simultaneous examination and comparison of a diverse 
range of input vectors and ANN architectures. 

Applicability analysis 

The proposed ANN model developed in this study was 
verified and the model performance under different 
conditions of rainfall and vegetation were evaluated in the 
area study. The verification of the ANN model was 
performed by comparing the ANN model results to the 
observed runoff and SWMM simulation results. To 
determine whether there were significant differences among 
the results, a one-way MANOVA was carried out. The area 
study was composed of streets and highways, apartments 
(with less than 10% vegetation), houses (with 10% to 15% 
vegetation), and greenbelts (with 75% vegetation). The 
rainfall type was classified as rainfall with two-, five-, and 
ten-year return periods. 

For this purpose, an experiment was designed in which 
nine rainfall-runoff events were divided into three groups 
according to three measurement models (ANN, SWMM, 
observed). To investigate the performance of the proposed 
model in different rainfall situations, we selected the subjects 
in accordance with three types of rainfall period returns (two, 
five, and ten years). The model outputs were measured by 
four response variables, y1, y2, y3, y4, where yi is the runoff 
volume (cm3/h) pertaining to the four types of catchment 
vegetation. Table 6 lists the values of the four dependent 
variables in each of the cells. 

  
Table 6 : Comparison of ANN model and SWMM results and observed runoff in different types of urban catchments and 
rainfall return periods  

Model Rainfall Return 

Period 

Mean of dependent 

variables (cm3/h) ANN SWMM 
Observed 

y1 7.96 7.7 6.5 

y2 168 164.2 132 

y3 90.8 89.76 63.7 
2 Year 

y4 29.5 30.9 19.15 

y1 11.84 11.2 9.2 

y2 263 239 233 

y3 144 156.1 99.1 
5 Year 

y4 42 45 26.05 

y1 14.2 14 9.8 

y2 294.3 299.3 245 

y3 165.3 167.3 115 
10 Year 

y4 51.3 56.2 31.5 
 

The one-way MANOVA analysis was performed by 
SPSS. The results are illustrated in Table 7. As shown in the 
table, none of the outcome variables is statistically significant 
at the 0.05 level of alpha. Therefore, we can conclude that no 
statistically significant difference exists between the value of 
runoff estimated by the ANN model, the SWMM model, and 

the one observed in the catchments. As the experiment was 
performed in various vegetation environments and rainfall 
periods of return, the MANOVA result suggests the 
responsiveness and applicability of the ANN model in a real-
life scenario. 

 

Table 7 : Multivariate Tests 

 Value F Hypothesis df. Error df. Sig. 

Pillai's Trace 1.102 1.228 8.000 8.000 .389 

Wilks' Lambda .055 2.450 8.000 6.000 .146 

Hotelling's Trace 14.345 3.586 8.000 4.000 .116 

Roy's Largest Root 14.143 14.143 4.000 4.000 .013 
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Conclusion 

In this study, various ANN architectures were examined 
to explore the best topology for runoff estimation in an urban 
catchment. The proposed topology comprises these 
characteristics: two hidden layers, eight neurons in the first 
layer, nine neurons in the second layer, the same activation 
function of tansig in both layers, and the LM training 
algorithm. The result from one-way MANOVA indicated that 
the proposed architecture can estimate runoff for different 
types of urban vegetation and rainfall intensities. A 
comparison of the runoff values generated by the proposed 
ANN model with those of SWMM showed no statistically 
significant differences between them.  

The results of this research support the application of 
ANN as a suitable alternative for physical-based models of 
runoff estimation. Particularly, in urban catchments where 
data are insufficient and hydrological processes are complex, 
the application of ANN is suitable. However, the ANN 
performance in urban catchments is the function of the input 
vector and network architecture. The results of a two-way 
MANOVA implied the significant effect of the ANN 
architecture and the input vector on ANN performance. 
Moreover, the interaction effect of the ANN architecture and 
input vector was additionally significant.  

These findings demonstrate the importance of input 
variables in ANN-based modeling of runoff estimation in 
urban catchments. Accordingly, a methodology is required to 
explore and select the best variables affecting the input 
vectors. The methodology developed in this study is based on 
an existing physical equation of the hydrological process. In 
future research, it is suggested to apply multivariate 
statistical techniques, such as exploratory factor analysis and 
structural equation models. These techniques will contribute 
to exploration of unobservable constructs and to create an 
input vector that will foster a more accurate ANN model. 
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