Diabetes mellitus is a chronic condition that is caused by decreased or no production of insulin in afloat blood sugar levels. Diabetes if left untreated, may often result in life-threatening complications including cardiovascular disease, eye disease, neuropathy, nephropathy. Diabetes-associated depression is one such disorder that has been brought into awareness in recent years. Diabetic individuals are at a two-fold increased risk of developing depression compared to the general population. Desperate studies have identified some possible mechanism for correlating diabetes-related depression, yet scarcely limited research on diabetes-related depression have been published, and those described are purely observational and cross-sectional trials. The primary purpose of the study was to validate this relationship with the help of exemplary animals such as the model of streptozotocin-induced diabetes. Validation of this model will give a direct correlation between the two diseases. This study used 40 mg/kg of streptozotocin to induce diabetes. Over the study period, body weight, blood glucose level was tracked regularly. Forced Swim Test was used to study depression like behavior. From the findings it has been found that certain diabetic animals exhibited depression like behavior during the later phase of the research. A correlation between diabetes and depression can be made from the observations.

Keywords: Diabetes, Diabetes associated depression, Streptozotocin, Forced Swim Test, Prevalence
Materials and Method

Materials
Streptozotocin was procured from HiMedia and glucose kit were obtained from Aspen laboratories.

Experimental Groups
The study was approved by NGSM institute of pharmaceutical sciences IAEC (IAEC number-NGSMIPS/IAEC/JULY-2018/106). Fifty Wistar rats of either sex were procured for the study. The animals were housed in the NGSM Institute of Pharmaceutical Sciences (NGSMIPS) animal facility in standard propylene cage and housed in the NGSM Institute of Pharmaceutical Sciences IAEC (IAEC number-NGSMIPS/IAEC/JULY-2018/106). Fifty Wistar rats of either sex were procured for the study. The animals were maintained under controlled temperature of 23±1 ºC with controlled humidity and 12 hr. day night cycle. The animals were fed with regular chow diet and water ad libitum.

Animals were divided into two groups
I. Disease control group administered with Streptozotocin (STZ) (40mg/kg i.p.)
II. Normal control group received normal saline (5ml/kg p.o.).

Glucose levels were estimated after 48 hours of STZ injection in disease control group. Animals with blood glucose concentrations above 200 mg/dL were selected for further study.

Body weight and blood glucose levels were tracked every week for both the groups until study period end i.e., 4 weeks. Also, both the test groups were assessed for depressive behavior every week during the course of the study. Forced swim test (FST) was performed to assess the depressive behavior.

Assessment of parameters
Fasting Blood Glucose
Rat were fasted overnight. Blood was collected from tail vein and plasma was separated by centrifugation at 6000 rpm for 10 minutes. Fasting blood glucose was measured using GOD-POD method.

Body weight
Body weight was monitored throughout the experiment on 7th, 14th, 21st and 28th day of the study i.e., every week.

Forced Swim test
Forced swim test was conducted in two sessions prior to STZ administration with a 24 hr period in a 20 cm diameter and 40 cm tall plexiglass container with clean water filled to 30 cm level. Animal was allowed to swim for a total of 15 min in the first session without recording the immobility time and in the second session which is 24 hr after acclimatization period, animals were allowed to swim for 5 min during which the immobility time was recorded. Similarly, FST was performed at the end of each week during the entire study period. The animals were dried and kept under a bulb and returned to their respective cage (Castagne et al., 2011; Porsolt et al., 1977).

Statistical analysis
The data were exhibited as Mean ± SD and the difference between the groups were calculated by unpaired t test using GraphPad Prism 6.0. P<0.05 was considered as statistically significant.

Results

Body weight
Body weight of the animals were monitored throughout the study period, at the end of each week for a period of four weeks. There was no significant difference found between the test groups (Fig.1).

Glucose levels
Blood glucose levels of normal group and streptozotocin administered group were monitored after 48 hours of STZ administration. Body weight was recorded every 7th day for one months.

Effect of diabetic condition on behavior in diabetic rats
Animals were screened for depression like behavior by Forced Swim Test (FST) on the 7th day of every week for 4 consecutive weeks. Increase in immobility time indicated depressed like behavior in rats (Fig. 3). ten animals in the STZ control group showed increased immobility time on the 21st day and 28th day. Rest of the animals in STZ group showed similar behavior as that of control group. About 22% of the diabetic animal showed depressive symptoms.
Depression is twice as prevalent in patients with diabetes than in general population (Badescue et al., 2016). The preponderance for diabetes associated depression increases as diabetic complications gets elevated (Badescue et al., 2016). It may occur due to change in quality of life related to diabetes, increased HPA axis activity, oxidative stress, also may be due to biochemical changes happening due to diabetes (Kyroce and Tsigos, 2016).

Sparse studies were reported on diabetes associated depression and those noted are merely observational and cross-sectional trial trial (Chirch et al., 2019; McCoy and Theke, 2019; Farooqi et al., 2019; Picozzi et al., 2019). These observational studies can only associate a relative risk proportion of diabetes associated with depression or association with causal risk, but direct straight relationships can only be established through experimental models. So, the main purpose of our study was to establish this factual relationship into reality. Chronic hyperglycemic condition for 30 days in rats clearly displayed depression like effect. STZ induced diabetes is a common animal model for diabetes, with marked increase in blood glucose levels (Mostafavinia et al., 2016). Concordance results were observed in our study where, STZ injection was successfully inducing diabetes. According to the study conducted by 40mg/kg STZ has successfully induced hyperglycemic condition in rats and was confirmed by monitoring blood glucose levels every week for four consecutive weeks. Results of this study was evident to prove that chronic hyperglycemic condition showed depression like symptoms (Aswar et al., 2017). Analogous kind of results were displayed by our study.

Our results showed that the weight of the animals had not increased significantly during the course of study. This was in concordance with the observation found in another study (Zafar and Naqui, 2010). Depressive behavior in our study was assessed by increased immobility time in FST. Our results showed that animals which have increased immobility time were depressed. Mostly the depressive like symptoms in the disease control group were found in the third and fourth week of the study period. These results were complementary to the results obtained from (Aswar et al., 2017). As mentioned, the primary purpose of this study was to validate diabetes associated depression in animal model of rats using STZ model. To the best of our knowledge, this is the one of the rare animal study to establish the direct relationship between diabetes associated depression. However, our study does not focus on the mechanistic correlation between diabetes and depression. Besides there are many hypotheses postulated for the development of depression in diabetic patients which was not taken into consideration in our study. These could be the limitation of our study.

**Conclusion**

Based on the observation obtained from our study it can be conclude that chronic hyperglycemic condition in rats showed depression like behavior. Alongside, this study paved new pathway and approaches for the researcher to look into new dimensions of diabetes associated depression phenomenon in the near future.

**Acknowledgement**

The authors are grateful to NGSM institute of pharmaceutical sciences, Nitte (Deemed to be University) Mangalore, India, for the facilities provided to carry out this research.

**Reference**


