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Abstract 

 

Anisotes trisulcus is a shrub rich in bioactive compounds and possesses promising pharmacological activities. This investigation explored the 

anti-hyperglycemic, insulin-sensitizing, antioxidant and anti-inflammatory activities of A. trisulcus extract (ATE) in diabetic rats. Type 2 

diabetes was induced by high fat diet and streptozotocin and diabetic rats were treated with 200 and 400 mg/kg ATE for 21 days. The results 

showed elevated fasting and postprandial blood glucose levels in HFD/STZ diabetic rats accompanied with reduced serum insulin and 

increased HOMA-IR. Serum triglycerides, cholesterol, LDL, vLDL and pro-inflammatory cytokines (TNF-α and IL-6) were increased, 

whereas HDL-cholesterol was decreased in diabetic rats. Treatment with ATE ameliorated hyperglycemia, dyslipidemia, insulin resistance 

and inflammation in diabetic rats. In addition, ATE increased hepatic hexokinase, glycogen, glutathione and superoxide dismutase and 

decreased lipid peroxidation and the gene expression levels of phosphoenolpyruvate carboxykinase in diabetic rats. In conclusion, this study 

showed for the first time the anti-hyperglycemic, antioxidant and anti-inflammatory activities of ATE in type 2 diabetic rats. ATE 

ameliorated blood glucose, lipids and pro-inflammatory cytokines, improved insulin sensitivity and hepatic carbohydrate metabolism, and 

suppressed oxidative stress. 
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Introduction 

Diabetes mellitus is a chronic metabolic disorder 

characterized by elevated blood glucose (hyperglycemia) and 

deteriorated insulin levels as well as action. Type 2 diabetes 

is the most common form of the disease and more than 380 

million have been reported to have this disease (Cho et al., 

2018). Chronic elevation of blood glucose levels can cause 

damage to different organs and hence management of 

hyperglycemia is very important to prevent its serious side 

effects (Jellinger, 2007, Levinthal & Tavill, 1999). 

Hyperglycemia is well-known to induce the excessive release 

of reactive oxygen species (ROS) and the pro-inflammatory 

cytokines tumor necrosis factor (TNF)-α and interleukin (IL)-

6 (Mahmoud et al., 2012). Therefore, hyperglycemia in 

usually associated with the development of oxidative stress 

and inflammation. These hyperglycemia-associated 

pathogenic processes can lead to lipid peroxidation (LPO), 

cell death, insulin resistance and many other complications 

(Abd El-Twab et al., 2016, Al-Hroob et al., 2018; 

Newsholme et al., 2016; Tiwari et al., 2013). In addition to 

elevated blood glucose levels, insulin resistance can increase 

the demand to insulin and lead to gradual destruction of 

pancreatic β-cells and worsen hyperglycemia (Halban et al., 

2014). Therefore, suppression of hyperglycemia, oxidative 

stress and inflammation can help increasing insulin 

sensitivity and preventing the complications of diabetes. 

Several medicinal plants have shown very promising 

anti-inflammatory, antioxidant and antidiabetic effects. In 

this context, Anisotes trisulcus (family Acanthaceae) has 

been reported to reduce blood glucose levels in diabetic mice 

(Okla et al., 2014). However, nothing has yet been reported 

on either its ability to ameliorate hyperglycemia in type 2 

diabetes or the underlying mechanism of action. A. trisulcus 

is a stiff erect shrub growing in Saudi Arabia and possesses 

multiple pharmacological activities, including anti-bacterial, 

anti-hypertension and hepatoprotective (Ali et al., 2001). A. 

trisulcus is rich in phenolic compounds and its methanolic 

extract showed a suppressive effects on oxidative stress and 

inflammation (El-Shanawany et al., 2014). This study 

evaluated the anti-hyperglycemic potential of A. trisulcus 

extract (ATE) in high fat diet (HFD)/streptozotocin (STZ)-

induced diabetic rats, pointing to its modulatory role on 

hyperlipidemia, carbohydrate metabolism, oxidative stress 

and inflammation. 

Materials and Methods 

Collection of A. trisulcus and extract preparation 

The plant samples were collected from the city of 

Sakaka (Aljouf, Saudi Arabia) and were identified and 

authenticated by an expert taxonomist. The leaves were 

separated, washed and dried in shade. The dry leaves were 

pulverized and macerated with 80% methanol and kept for 72 

h at 4°C. After filtration, the filtrate was concentrated using 

rotary evaporator and kept at -20°C until used. 

Experimental animals and induction of type 2 diabetes 

mellitus 

Male Wistar rats weighing 180-200 g were housed in 

standard cages and maintained on a 12-h light/dark cycle at 

22°C–24°C. The animals were fed a HFD (58% fat, 17% 

carbohydrate and 25% protein) for 4 weeks followed by a 

single injection of 35 mg/kg STZ (Sigma, USA) as recently 

reported by Elsayed et al. (Elsayed et al., 2020). STZ was 

dissolved in freshly prepared citrate buffer (pH 4.5) and 

administered intraperitoneally (i.p.). After on week, blood 

glucose levels were determined and animals with blood 

glucose higher than 250 mg/dl were considered diabetic and 

selected for further investigation. Control rats were received 

normal diet for 4 weeks and received i.p. injection of citrate 

buffer. 

The animals were then randomly divided into the 

following groups: 

Group 1: Control. 
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Group 2 (ATE): rats received 400 mg/kg ATE orally for 21 

days. 

Group 3: Diabetic 

Group 4 (Diabetic + 200 mg/kg ATE): diabetic rats received 

200 mg/kg A. trisulcus extract (ATE) orally for 21 days. 

Group 5 (Diabetic + 400 mg/kg ATE): diabetic rats received 

400 mg/kg A. trisulcus extract (ATE) orally for 21 days. 

ATE has been previously shown to exert anti-

inflammatory activity in rats when administered at doses of 

400 mg/kg (El-Shanawany et al., 2014). Therefore, 200 and 

400 mg/kg ATE doses have been selected in this study. 

Collection of samples 

At the day before the end of the experiment, blood 

samples were collected from overnight fasted rats and 2 h 

after oral administration of 3 g/kg glucose solution. At the 

last day of the experiment, rats were sacrificed under 

anesthesia and blood samples were collected to separate 

serum. The animals were then dissected, and liver was 

excised, washed and stored at -80°C. 

Determination of serum glucose and lipids 

Serum glucose levels were assayed following the 

method of Trinder (Trinder, 1969) using commercially 

available kit (Randox, UK). The levels of serum triglycerides 

(Fossati & Prencipe, 1982), total cholesterol (Allain et al., 

1974) and HDL-cholesterol (Burstein et al., 1970) were 

assayed using Randox (UK) kits. vLDL- and LDL-

cholesterol levels were calculated as follows: 

vLDL-cholesterol = Triglycerides/5 

LDL-cholesterol = Total cholesterol – (HDL-cholesterol + 

vLDL-cholesterol) 

Determination of insulin and HOMA-IR 

Serum insulin was determined using RayBiotech (USA) 

assay kit and homeostasis model of insulin resistance 

(HOMA-IR) (Haffner, 2000) was calculated as following: 
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Determination of liver glycogen and hexokinase 

Liver glycogen content was determined according to the 

method of Seifter et al (Seifter et al., 1950) and hexokinase 

activity was assayed as described by Brandstrup et al 

(Brandstrup et al., 1957). 

Determination of PEPCK gene expression by quantitative 

real time-PCR (qRT-PCR) 

Total RNA was isolated using TRIzol reagent 

(Invitrogen, USA) and its quantity was determined using a 

nanodrop. Samples with A260/A280 higher than 1.7 were 

immediately reverse transcribed into cDNA. For gene 

expression analysis, qRT-PCR was employed using 

QuantiFast SYBR Green RT-PCR kit (Qiagen, Hilden, 

Germany) and the following primers: phosphoenolpyruvate 

carboxykinase (PEPCK): F: 5'-

CGTTGGGAGCTAGGAGCAAA-3' & R: 5'-

CCCATCAGTGTCAGATGCGA-3' and GAPDH: F: 5'-

AACTTTGGCATCGTGGAAGG-3' & R: 5'-

TACATTGGGGGTAGGAACAC-3'. qRT-PCR reactions 

were performed using ViiA™ 7 System (Thermo Fisher 

Scientific, CA, USA) in duplicates. The transcript number 

was determined using the 2∆∆Ct method (Livak & 

Schmittgen, 2001). 

Determination of lipid peroxidation (LPO) and 

antioxidants 

Liver samples were homogenized in cold 0.1 M 

phosphate buffer (pH 7.4), centrifuged at 6000 rpm and the 

supernatant was collected for analysis. Thiobarbituric acid 

reactive species (TBARS) as a marker of LPO was assayed 

according to the method of Ohkawa et al. (1979). Reduced 

glutathione (GSH) was estimated according to the method 

described by Ellman (1959) and superoxide dismutase (SOD) 

activity was assayed based on the method of Nishikimi et al. 

(1972). 

Determination of pro-inflammation cytokines 

Serum levels of tumor necrosis factor-α (TNF-α) and 

interleukin (IL)-6 were determined using commercial kits 

(Cusbio, China) according to the manufacturer’s protocols. 

Statistical analysis 

All data were expressed as the mean ± standard error of 

the mean (SEM) and the differences between mean values of 

multiple groups were analyzed using one-way analysis of 

variance (ANOVA) followed by Tukey’s Post hoc test on 

Graphpad Prism 7. Statistical significance was considered at 

P less than 0.05. 

Results 

ATE prevents hyperglycemia and insulin resistance in 

diabetic rats 

Treatment of the normal rats with 400 mg/kg ATE 

didn’t alter both fasting and postprandial glucose levels. 

HFD/STZ diabetic rats exhibited significant (P<0.001) 

increase in fasting and postprandial blood glucose levels as 

represented in (Fig. 1A). Treatment of the diabetic animals 

with ATE decreased fasting and postprandial blood glucose 

significantly (P<0.001). 

Serum insulin levels were significantly reduced in 

HFD/STZ diabetic rats when compared with the control 

(P<0.01) (Fig. 1B). Oral administration of 200 and 400 

mg/kg ATE to diabetic rats increased serum insulin 

significantly (P<0.05). HOMA-IR was increased in diabetic 

rats significantly (P<0.01) when compared with the normal 

rats. Treatment with ATE decreased HOMA-IR values in 

diabetic rats (P<0.01). ATE didn’t affect serum levels and 

HOMA-IR values in normal rats. 

 

ATE improves carbohydrate metabolizing enzymes and 

increases glycogen in diabetic rats 
Hexokinase activity was significantly (P<0.001) decreased in 

HFD/STZ-induced rats when compared with the control rats 

(Fig. 2A). on the other hand, PEPCK gene expression was 

significantly (P<0.001) increased in the liver of HFD/STZ 

diabetic rats (Fig. 2B). Glycogen was significantly (P<0.001) 

declined in the liver of HFD/STZ diabetic rats as represented 

in Figure 2C. Treatment of the diabetic rats with ATE (200 

and 400 mg/kg) increased hexokinase activity and glycogen 

content, whereas decreased PEPCK gene expression. In 

contrast, normal rats received 400 mg/kg ATE showed 

normal hexokinase, PEPCK and glycogen (Fig. 2).
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Fig. 1 : ATE decreased fasting and postprandial glucose levels (A) and HOMA-IR (C) and increased serum insulin levels (B) 

in HFD/STZ diabetic rats. Data are mean ± SEM (n = 6). **P<0.01 and ***P<0.001 compared to Control. #P<0.05, ##P<0.01 

and ###P<0.001 compared to Diabetic. 

 

 
Fig. 2 : ATE increased hexokinase activity (A) and glycogen (C) and decreased PEPCK gene expression (B) in HFD/STZ 

diabetic rats. Data are mean ± SEM (n = 6). ***P<0.001 compared to Control. #P<0.05 and ###P<0.001 compared to 

Diabetic. 
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ATE prevents dyslipidemia in diabetic rats 

HFD/STZ diabetic rats showed significantly (P<0.001) 

increased serum triglycerides, total cholesterol, LDL-

cholesterol and vLDL-cholesterol as shown in Figures 3A-D. 

HDL-cholesterol was decreased significantly (P<0.01) in 

serum HFD/STZ diabetic rats when compared with the 

control group (Fig. 3E). Treatment with ATE (200 and 400 

mg/kg) decreased serum triglycerides, total cholesterol, LDL-

cholesterol and vLDL-cholesterol (P<0.001). Although the 

lower dose of ATE didn’t increase HDL-cholesterol in 

diabetic rats, the high dose increased its levels significantly 

(P<0.05). All assayed lipids showed non-significant changes 

in normal rats treated with 400 mg/kg ATE 

. 

 

 
Fig. 3 : ATE prevented dyslipidemia and increased serum HDL-cholesterol in HFD/STZ diabetic rats. Data are mean ± SEM 

(n = 6). **P<0.01 and ***P<0.001 compared to Control. #P<0.05 and ###P<0.001 compared to Diabetic. 

 

ATE attenuates oxidative stress in diabetic rats 

Hepatic TBARS levels were elevated significantly 

(P<0.001) in HFD/STZ diabetic rats as represented in Figure 

4A. On the other hand, hepatic GSH (Fig. 4B) and SOD (Fig. 

4C) were decreased in HFD/STZ diabetic rats. Oral treatment 

with decreased TBARS and increased GSH and SOD in 

HFD/STZ diabetic rats. The high dose of ATE didn’t alter 

TBARS, GSH and SOD in normal rats. 

ATE prevents inflammation in diabetic rats 

Serum TNF-α (Fig. 5A) and IL-6 (Fig. 5B) were 

elevated in HFD/STZ diabetic rats as compared to the control 

group (P<0.001). In contrast, treatment with ATE 

ameliorated the levels of these inflammatory mediators in 

diabetic rats; however, exerted no effect in normal rats.
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Fig. 4 : ATE decreased TBARS (A) and increased GSH (B) and SOD (C) in HFD/STZ diabetic rats. Data are mean ± SEM  

(n = 6). ***P<0.001 compared to Control. #P<0.05, ##P<0.01 and ###P<0.001 compared to Diabetic. 

 

 
Fig. 5 : ATE decreased serum TNF-α (A) and IL-6 (B) in HFD/STZ diabetic rats. Data are mean ± SEM (n = 6). ***P<0.001 

compared to Control. ###P<0.001 compared to Diabetic. 

 

Discussion 

This study explored the ameliorative effects of ATE on 

hyperglycemia, dyslipidemia, oxidative stress and 

inflammation in HFD/STZ type 2 diabetic rats. 

Hyperglycemia in elevated blood glucose levels resulting 

from impaired insulin secretion and/or action. 

Hyperglycemia is the main characteristic feature of diabetes 

that leads to serious complications in many organs if not 

tightly managed (Jellinger, 2007). In this study, HFD/STZ-

induced rats showed hyperglycemia manifested by the 

increased fasting and postprandial blood glucose levels. In 

addition, hyperglycemia was accompanied with decreased 

serum insulin as well as insulin resistance evidenced by the 

significantly increased HOMA-IR. In agreement with these 

findings, hyperglycemia and insulin resistance have been 

previously demonstrated in HFD/STZ-induced rats (Elsayed 

et al., 2020, Germoush et al., 2019; Guex et al., 2019; 

Mahmoud et al., 2012). Therefore, HFD/STZ diabetes is a 

well-acknowledged model mimicking human T2DM (Lee et 

al., 2011) and is an accepted model to evaluate the new 

therapeutic agents. Treatment of diabetic rats with ATE in 

the present study resulted in ameliorated hyperglycemia and 

insulin sensitivity. The ability of A. trisulcus to improve 

blood glucose levels has been previously reported by Okla 

Anti-hyperglycemic, antioxidant and anti-inflammatory effects of Anisotes trisulcus in type 2 diabetic rats  
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(Okla et al., 2014) who reported decreased blood glucose 

levels in diabetic mice treated with A. trisulcus aqueous 

extract. However, the current study is the first to show the 

anti-diabetic and insulin sensitizing effects of A. trisulcus in 

type 2 diabetes. 

Given the essential role of the liver in maintaining 

glucose homeostasis, the effect of ALE on hepatic 

hexokinase, PEPCK and glycogen was determined. 

Uncontrolled hepatic glucose production mediated via 

increased glycogenolysis and gluconeogenesis and 

suppressed peripheral glucose utilization occur consequent to 

impaired insulin secretion and/or sensitivity cause 

hyperglycemia (Nordlie et al., 1999). In the present study, 

the activity of hexokinase was significantly decreased, 

whereas PEPCK expression was increased in diabetic rats. 

Previous investigations have reported declined hepatic 

hexokinase and increased PEPCK in HFD/STZ-induced 

diabetic (Elsayed et al., 2020, Gothandam et al., 2019, 

Mishra et al., 2019). Impaired insulin secretion and insulin 

resistance are known causes of declined hexokinase and 

consequently decreased glucose oxidation via glycolysis 

(Ahmed et al., 2010, Gupta et al., 1999). On the other hand, 

PEPCK which catalyzes the initial step in hepatic 

gluconeogenesis (Quinn &Yeagley, 2005) has been 

increased. In agreement with these results, hepatic expression 

PEPCK was increased in HFD/STZ-induced diabetes 

(Elsayed et al., 2020, Song et al., 2019). This study pointed 

to increased gluconeogenesis and glycogenolysis in 

HFD/STZ diabetic rats as evidenced by the decreased 

glycogen content. These processes supported indicate insulin 

deficiency and insulin resistance in HFD/STZ diabetic rats 

because insulin stimulates glycogen synthesis (Golden et al., 

1979). Treatment with ATE increased insulin levels resulting 

in improved hexokinase activity and glycogen content as well 

as PEPCK expression in diabetic rats. Given that PEPCK is 

insulin-independent (Scott et al., 1998), its decrease 

following treatment confirmed the added he anti-

hyperglycemic effect of ATE irrespective of its insulin 

sensitizing effect. 

HFD/STZ diabetic rats in the present study showed 

hyperlipidemia manifested by increased triglycerides, 

cholesterol, LDL and vLDL and decreased HDL-cholesterol. 

Hyperlipidemia is a casual risk factor for atherosclerotic 

cardiovascular disease and endothelial dysfucntion 

(Mahmoud et al., 2017c; Mahmoud et al., 2017d; 

Nordestgaard, 2016). Hypercholesterolemia is a type of 

hyperlipidemias that elicits atherosclerosis, chronic 

inflammation and accumulation of hepatic lipids  and has 

been reported in HFD/STZ-induced rats (Elsayed et al., 

2020; Mahmoud et al., 2012). ATE significantly ameliorated 

dyslipidemia in diabetic rats, demonstrating its potent 

antidiabetic and cardioprotective effects. 

Hyperglycemia can provoke oxidative stress and 

inflammation, leading to damage to different body organs 

(Mahmoud et al., 2012). In addition, hyperlipidemia and 

accumulation of lipids in hepatocytes and endothelial cells 

has been associated with diminished antioxidant defenses and 

excess production of ROS which damage cellular 

components and induce cell death (Anila & Vijayalakshmi, 

2003; Forstermann, 2008; Tiwari et al., 2013). Also, ROS 

induce the release of pro-inflammatory cytokines as 

evidenced by increased TNF-α and IL-6. Oxidative stress in 

HFD/STZ diabetic rats in the current study was manifested 

by increased TBARS and decreased GSH and SOD. Reduced 

antioxidants in the liver of diabetic rodents along with 

increased pro-inflammatory cytokines have been previously 

reported (Mahmoud et al., 2012; Sahin et al., 2019). In 

addition, serum levels of TNF-α and IL-6 are known to 

elevated in type 2 diabetic patients (Pickup et al., 2000). 

These cytokines prevent insulin-stimulated peripheral 

glucose uptake, promote hepatic glucose production (Lang et 

al., 1992), suppress insulin action in muscles (Del Aguila et 

al., 1999) and increase lipolysis (Green et al., 1994). 

Furthermore, these cytokines reduce insulin receptor 

substrate-1 tyrosine phosphorylation, resulting in impaired 

insulin signaling, insulin resistance and hyperglycemia 

(Müller et al., 2002; Senn et al., 2002). Thus, suppression of 

oxidative stress and inflammation can improve insulin 

sensitivity and glucose tolerance in diabetes. In the present 

study, ATE reduced TBARS, TNF-α and IL-6, and increased 

GSH and SOD, demonstrating its potent antioxidant and anti-

inflammatory activities. These antioxidant and anti-

inflammatory effects of ATE are attributed to its rich content 

of phenolics and other bioactive compounds. Phenolic 

compounds possess multiple effects, including antioxidant, 

anti-inflammatory, anti-hyperlipidemic and anti-diabetic (Al-

Dossari et al., 2019; Aladaileh et al., 2019; Alhusaini et al., 

2019; Althunibat et al., 2019; Kamel et al., 2016; Mahmoud, 

2012, 2013, Mahmoud et al., 2017a; Mahmoud et al., 

2017b). ATE has been previously reported to contain veratric 

acid, α-amyrin, vanillic acid, and many other constituents 

with known antioxidant and anti-inflammatory activities (El-

Shanawany et al., 2014). Vanillic acid has shown protective 

effects against hyperlipidemia and inflammation induced by 

HFD in rats (Chang et al., 2015). In addition, vanillic acid 

activated thermogenesis in brown and white adipose tissue of 

HFD-fed mice (Han et al., 2018) and ameliorated obesity via 

activation of the AMPK pathway (Jung et al., 2018). 

In conclusion, the results of this study show for the first 

time the ameliorative effect of ATE on hyperglycemia, 

hyperlipidemia, oxidative stress and inflammation in type 2 

diabetic rats. ATE ameliorated both fasting and postprandial 

blood glucose levels, and increased insulin sensitivity in 

HFD/STZ diabetic rats. ATE attenuated dyslipidemia, 

increased HDL-cholesterol, improved hexokinase activity 

and glycogen content and decreased PEPCK expression. 

Furthermore, ATE suppressed lipid peroxidation and 

inflammation and increased cellular antioxidants in diabetic 

rats. Therefore, TE represent a promising lead for the 

development of antidiabetic agent; however, further 

investigations are needed to explore the underlying 

mechanisms. 
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