CONTRIBUTION TO THE STUDY OF BRYOPHYTIC BIODIVERSITY OF THE MAMORA FOREST (MOROCCO)

Meriem El Harech¹, Najib Magri², Lahcen Zidane³, Oumaima BENHARBIT⁴, Allal Douira¹, Nadia Belahbib¹ and Jamila Dahmani⁷

¹Laboratory of Botany, Biotechnology and Plant Protection, Faculty of Sciences, Ibn Tofail University, BP 133, Kénitra 14000, Morocco.
²Forest Research Center, Water and Forests Department, Avenue Omar Ibn El Khattab, BP 763, Rabat-Agdal, 10050, Morocco.
³Laboratory of Biodiversity and Natural Resources, Faculty of Sciences, Ibn Tofaïl University, BP 133, Kénitra 14000, Morocco.
⁴Laboratory of Biochemistry, Biotechnology, Health and Environment, Faculty of Sciences, Ibn Tofail University, BP 133, Kénitra 14000, Morocco.

Abstract

The cork oak forest of Mamora located in northwest Morocco is an important biodiversity reserve. Since the bryological component of the forest has only been the subject of sporadic investigations, the objective of this study is to establish an exhaustive list of this flora. For this purpose, stratified random sampling was adopted, the strata correspond to the cantons of the forest. Of the 245 plots of the Mamora, 50 were randomly selected. In these plots, bryophyte samples were collected each time a stand were encountered. The explorations took place in the fall and spring of 2015, 2016 and 2017. The determinations allowed us to inventory 70 species of bryophytes with 44 mosses, 22 hepatics and 4 Anthocerotes. Of these, 12 are rare in the study area and 22 are new to the Mamora. Among the Mosses, Ptychostomum cappillare is the most widespread species and among the Hepatics, Riccia cilifera has the highest recoveries. Among the Anthocerotes, Phaeroceros laevis is the most frequent. Terricolous bryophytes are the most common. Corticoles are mainly observed on the basis of the cork oak trunk. Canton A is the richest in bryophyte species with 60 taxa. Areas where the soil is covered with bryophytes show a high rate of acorn germination. This flora improves the soil’s ability to absorb water, moisture will help the acorn to germinate easily instead of rotting.

Key words: Mamora, Cork oak, biodiversity, bryophytes, germination, Morocco.

Introduction

The Mamora Forest in northwest Morocco is the largest one-piece cork oak forest in the world (Natividade, 1956, Metro and Sauvage, 1955, HCEF LCD, 2015). It is a socio-economic area of great importance. For surrounding urban areas, the Mamora represents a great depolluting system for the air by collecting carbon dioxide and releasing oxygen. It is also an important biodiversity reserve. The vascular vegetation largely dominated by the Cork oak (Quercus suber) is estimated at 408 species, subspecies and varieties, which represents 48% of the vascular flora of Moroccan cork forests (Sauvage, 1961, Aafi et al., 2005) and 9.3% of the whole forest of Morocco (Benabid, 2000). More than 250 species of Arthropods have been recorded in the Mamora forest, as well as 12 species of nesting birds (ONEM, 2001). The plant component that has been least explored in the area is that of non-vascular cryptogams. Indeed, it is only during the last two decades that studies on the census of bryophytes has begun in the Mamora forest (Ahayoun et al., 2013), work that has remained sporadic. Bryophytes that have not yet been studied in Morocco are of increasing interest elsewhere for their bio-accumulative properties of heavy metals and organic pollutants and their role as bio-indicators (Ares et al., 2012, Giordano et al., 2005 and Gonzalez et al., 2016). They represent
between 15 000 (Gradstein et al., 2001) and 25000 species (Crum 2001) worldwide and thus constitute the second plant phylum after flowering plants (Mishler, 2001). It is therefore entirely justified to undertake the updating of the catalogue of bryophyte species in Morocco. To this end, the objective of this study is to establish an exhaustive list of bryophyte species in the Mamora forest.

Material and Method

Study area, geographical location and description

The Mamora forest is located in northwestern Morocco, along the Atlantic Ocean, between the longitudes 6° and 6°45' west and the latitudes 34° and 34°20' north (Fig. 1). It is part of a rectangle 60 km long, from west to east and 30 km wide, from north to south (Aafi, 2006). Lepoutre in 1966 described it as a vast quaternary platform that extended from the Atlantic Ocean between Rabat and Kénitra, up to 70 km inland, it was then bounded to the south by the Bou-Regreg valley and the foothills of the Central Plateau and to the north by the Gharb plain.

The Mamora forest is the largest cork oak forest in the world. It covered more than 130000 ha at the beginning of the twentieth century (Emberger, 1939, Benabid, 2000). Today, it covers less than 60,000 ha (Benabid, 2000). This decline in the extent of cork oak in Mamora is mainly due to the substitution of this species by pine, eucalyptus and Australian acacias. The area occupied by cork oak in the Mamora is reduced to less than one-third of its potential surface area (HCEFLCD, 2004). The situation

![Fig. 1: Geographical location of Mamora (Cantons A, B and C). Sampled parcel in a red.](image-url)
Contribution to the Study of Bryophytic Biodiversity of the Mamora Forest (Morocco)

is aggravated by overgrazing, herds are pushed back to
the much more hospitable cork forests compared to forest
formations organized by exotic species such as Eucalyptus,
whose undergrowth is almost absent (Dahmani, 2005).
The Mamora is divided from west to east into five cantons
(A, B, C, D and E) delimited by four
depressions where wadis flow northward. These cantons are subdivided into 33
groups, containing a total of 448 parcels
and 23 enclaves (HCEFLCD, 2013).

The bioclimate of this cork forest is
subhumid with warm winter in its western
part and semi-arid with temperate winter
in its central and eastern part
(HCEFLCD, 2013, Benabid, 2000 and
Aafi, 2007), determining a decreasing
rainfall gradient from west to east.
Rainfall thus varies from 300 to 680 mm
(HCEFLCD, 2013). Intra-annual
variability is of the order of 120 mm in
December (most watered month) and 0.5
mm in July (driest month) (Fig. 2).
Maximum temperatures range from
26.1°C to 35.5°C and minimum from 5°C
to 8.2°C (HCEFLCD, 2013). The altitude
is barely 7m at the level of the Atlantic
coast. It increases towards the east to
reach 290 m at the level of the city of
Kémisset (Metro and Sauvage, 1955,
HCEFLCD, 2013).

From a pedological point of view, the
domaniel massif presents various types
of soils whose differentiation is essentially
based on the thickness of the sand layers
that cover the red clays of the Mamora,
the nature of the covering sands and the
more or less brutal transition from sands
to deep clays (HCEFLCD, 2011).

According to HCEFLCD (2013), a
distinction is then made between (i)
shallow beige sands on clay in the
southern part of cantons C, D and E, (ii)
deep beige sands on clay in the northern
part of cantons C, D and E, (iii) beige
sands resting on red sands on clay which
constitute the dune relief of cantons A
and B and (iv) hydromorphic soils located
in the lowlands that are covered by
temporary or permanent dayas.

Sampling method

This work is carried out in cantons
A, B and C. Cantons E and D were excluded because
they are largely private enclaves. The adopted sampling
is randomly stratified. We then considered the three
cantons A, B and C as strata whose elevation, bioclimate,
precipitation and temperatures as well as the thickness

<table>
<thead>
<tr>
<th>Family</th>
<th>Species</th>
<th>Substratum</th>
<th>% Presence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aneuraceae</td>
<td>Isothecium alopecurioides</td>
<td>terricolous</td>
<td>4</td>
</tr>
<tr>
<td>Brachytheciaceae</td>
<td>Brachythecium rutabulum</td>
<td>terricolous</td>
<td>46</td>
</tr>
<tr>
<td></td>
<td>Brachythecium velutinum</td>
<td>terricolous</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Homalothecium sericeum</td>
<td>corticolous</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Rhynchostegium megapolitanum</td>
<td>terricolous</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Scoportium circinatum</td>
<td>corticolous</td>
<td>6</td>
</tr>
<tr>
<td>Bryaceae</td>
<td>Bryum argentum</td>
<td>saxicolous</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Bryum caespiticium</td>
<td>terricolous</td>
<td>40</td>
</tr>
<tr>
<td></td>
<td>Bryum dichotomum</td>
<td>saxicolous</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Bryum radiculosum</td>
<td>saxicolous</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Ptychostomum capillare</td>
<td>terricolous</td>
<td>92</td>
</tr>
<tr>
<td></td>
<td>Ptychostomum torquescens</td>
<td>terricolous</td>
<td>4</td>
</tr>
<tr>
<td>Ditrichaceae</td>
<td>Cheilothela chloropus</td>
<td>terricolous</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Pleuridium acuminatum</td>
<td>terricolous</td>
<td>50</td>
</tr>
<tr>
<td></td>
<td>Pleuridium subalatum</td>
<td>terricolous</td>
<td>4</td>
</tr>
<tr>
<td>Fabroniaceae</td>
<td>Fabronia pusilla</td>
<td>corticolous</td>
<td>10</td>
</tr>
<tr>
<td>Fissidentaceae</td>
<td>Fissidens brioides</td>
<td>terricolous</td>
<td>8</td>
</tr>
<tr>
<td>Funariaceae</td>
<td>Entostodon fascicularis</td>
<td>saxicolous</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Entostodon pulchellus</td>
<td>saxicolous</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Funaria hygrometrica</td>
<td>terricolous</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Funariella curvistata</td>
<td>saxicolous</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>Physcomitrium pyriforme</td>
<td>terricolous</td>
<td>4</td>
</tr>
<tr>
<td>Leucobryaceae</td>
<td>Campylopus introflexus</td>
<td>corticolous</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Campylopus flexuosus</td>
<td>corticolous</td>
<td>6</td>
</tr>
<tr>
<td>Orthotrichaceae</td>
<td>Orthotrichum anomalum</td>
<td>Corticoole</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Orthotrichum diaphanum</td>
<td>corticolous</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Orthotrichum lyellii</td>
<td>corticolous</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Zygodon viridissimus</td>
<td>terricolous</td>
<td>2</td>
</tr>
<tr>
<td>Pottiaceae</td>
<td>Aloina ambiguia</td>
<td>terricolous</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Barbula convoluta</td>
<td>saxicolous</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Barbula unguiculata</td>
<td>terricolous</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>Didymodon fallax</td>
<td>saxicolous</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Didymodon tophaceus</td>
<td>saxicolous</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Didymodon vinealis</td>
<td>saxicolous</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Syntrichia laevispila</td>
<td>corticolous</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Syntrichia ruralis</td>
<td>corticolous</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Timmiella barbuloides</td>
<td>terricolous</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Tortella flavovirens</td>
<td>saxicolous</td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Tortella nitida</td>
<td>saxicolous</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>Tortella squarrosa</td>
<td>terricolous</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>Tortula marginata</td>
<td>saxicolous</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>Tortula muralis</td>
<td>saxicolous</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>Trichostomum crispulum</td>
<td>terricolous</td>
<td>8</td>
</tr>
<tr>
<td>Sematophyllaceae</td>
<td>Sematophyllum substramulosum</td>
<td>corticolous</td>
<td>16</td>
</tr>
</tbody>
</table>

Table 1: Mosses of cork oak forest of Mamora.
of the sand layer vary from west to east. Out of a total of 245 plots in cantons A, B and C, 50 sampling stations were selected randomly, taking care to avoid plots containing private enclaves (Fig. 1). The proportional random stratified sampling was performed on Excel using the function *alea*.

Bryophytes were harvested in the fall and spring of 2014, 2015 and 2016 with further surveys in the spring. In these ecosystems, spring is the most favorable season to observe the majority of species under best conditions, especially with the sporophyte that is necessary for identification. The number of samples can be up to 25 in stations with high muscular coverage. All bryophyte stands encountered in the field were sampled for laboratory determination based on macroscopic and microscopic characteristics. The identified taxa are stored in the laboratory’s herbarium. The determination keys used were those of Augier (1966), Smith (1990 and 2004), Coudreuse (2005), Casas et al., (2006 and 2009). The nomenclature adopted is based on that of the list of Mediterranean species (Ros et al., 1999), (Ros et al., 2007) and (Ros et al., 2013). The list of bryophyte species is presented in a table by family, substrate type and presence rate. The presence rate is calculated according to the number of stations in which the taxon appears in relation to the total number of stations.

Results

Exploration of the 50 stations of the Mamora forest allowed us to inventory 70 species related to 38 genera and 21 families (Tables 1 and 2). Mosses are dominant with 44 species (62.85% of the whole population) (Table 1), Hepatics are represented by 22 species (31.42%) and Anthocerotes by only 4 species (5.71%) (Table 2). Tables 1 and 2 show the bryophyte species by family, substrate and presence rate. Table 3 shows bioclimate, soil type and specific richness of bryophytes in the three cantons.

Discussion

Explorations carried out through the cork forest of Mamora over three years have enabled the census of 70 species of bryophytes that floristic analysis allowed to link to 21 families, 4 of which are clearly dominant, these are Pottiaceae (15 species), Ricciaceae (12 species), Bryaceae (6 species) and Brachytheciaceae (5 species) (Table 1 and 2). These families alone account for 38 species or 54.28% of the whole population. The other families (17 taxa) contribute to 45.71% of the total population.

After comparison with previous work (Ahayoun, 2013), 22 species are observed for the first time in Mamora, including 21 mosses and a single hepatic. These taxa are: *Isothecium alopecurioides*, *Homalotheicum sericeum*, *Scorpiurium cinctum*, *Bryum radiculosum*, *Cheliolthena chloropus*, *Funariella curviseta*, *Entosthodon anomalinus*, *Orthotrichum anamalous*, *Aloina ambigua*, *Barbula convoluta*, *Barbula unguiculata*, *Didymodon tophaceus*, *Didymodon fallax*, *Tortella flavovirens*, *Tortella nitida*, *Tortella squarrosa*, *Tortulina marginata*, *Syntrichia ruralis* and *Fossombronia caespitiformis subsp. multispira*.

The most widespread species in the study site is essentially *Ptychostomum capillare*, which is found in...
Almost all samples (about 92%), followed by Pluridium acuminatum (50%), Brachythecium rutabulum (46%) and Bryum caespiticium (40%). All these species are terricolous. Rare species, meaning those found in only two stations in the study area, are: Zygodon viridissimus, Fossombronia caespitiformis subsp. multisp., Frullania dilatata, Riccia crozalsii, Riccia fluitans, Riccia huebeneriana, Riccia lamellosa, Riccia macrocarpa, Riccia warstorfii var. subinermis, Sphaerocarpus michelli, Targionia lordeeriana, Phymatoceros bulbiculus. They are all species that like humidity and appear after the rains but they dry out very quickly.

Among the Hepatics, Riccia ciliifera appears during the first rains in autumn, but it flowers in spring, it is the most widespread species. All Anthocerotes are terricolous, Phaeroceros laevis, which is the most frequently encountered taxon, occupies the wet cracks of the clayey sand slopes.

The majority of the inventoried species (55.7%) are terricolous. They are found on the moist soil of the Mamora. The epiphytes are all corticolous (17.1%). They are found on the cork oak trunk: Campylopus introflexus, Campylopus flexuosus, Fabronia pusilla, Homalothecium sericeum, Orthotrichum anomalum, Orthotrichum diplanum, Orthotrichum lyellii, Scopariurn circinatum, Sematophyllum substrumulosum, Syntrichia laevipila, Syntrichia ruralis and Frullania dilatata. Saxicolous species (25.7%) occur on sandstone blocks that appear sporadically. Only one species is aquatic, Riccia fluitans that were sampled in plot A-IV-6 (Canton A) in a water flow that dries out in summer.

The specific diversity in bryophytes is highest in canton A (60 taxa), which can be explained by the frequency of small temporary pools that appear where the clay layer is exposed and by the proximity of the coast that provides the area with moisture to compensate for the dryness of sandy soils that are generally deep and sometimes dune-like. The proliferation of bryophytes occurs after rain and a brief period of sunshine. Canton B, with a specific population of only 28 taxa (Table 3), is characterized by a sparse forest formation, a very poor undergrowth and a compacted soil. All these factors hinder the diversification of bryophytes. Canton C, whose bioclimate is semi-arid, has a specific richness of 34 taxa with large recoveries, this is explained by the fact that this canton, where the clay layer is close to the surface, is characterized by an abundance of temporary pools.

The arborescent stratum of the Mamora is dominated by cork oak. The latter is rarer in the shrub stratum and practically non-existent in the herbaceous stratum, especially in the forest edges. We found that, where the muscular layer exists in the presence of an undergrowth, acorn germination is observed. This could be explained by the fact that bryophytes, by improving the soil’s water retention capacity, promote the germination of acorns that rot in place where the muscular layer is absent. It should also be noted that bryophytes are more diversified and abundant when the woody and herbaceous undergrowth is significant.

Table 3: Species richness, Bioclimate and soil of the three cantons in Mamora forest.

<table>
<thead>
<tr>
<th>Cantons</th>
<th>Bioclimate</th>
<th>Soil type</th>
<th>specific richness of bryophytes</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>Sub-humid</td>
<td>deep beige sands on clay</td>
<td>60</td>
</tr>
<tr>
<td>B</td>
<td>Sub-humid</td>
<td>medium deep beige sands on clay</td>
<td>28</td>
</tr>
<tr>
<td>C</td>
<td>Semi-arid</td>
<td>shallow beige sands on clay</td>
<td>34</td>
</tr>
</tbody>
</table>

Conclusion

The harvest of bryophytes according to a stratified random sampling in Mamora forest during the fall and spring of 2014, 2015 and 2016 allowed us to identify 70 species, including 44 mosses, 22 hepatics and 4 anthocerotes. This important diversity would be related to the environmental conditions that favor the establishment of bryophytes. Indeed, the Mamora area with the highest number of bryophyte species is canton A, where the bioclimate is sub-humid and the soil is moistened by temporary and permanent days that appear each time the sands are not deep and the clays are surfacing. In canton C, bryophytes show significant recoveries related to soil moisture that is maintained by the clay layer near the surface. The bryoflora of Mamora forest helps to improve the retention and infiltration of rainwater, which is no longer lost through dripping. Moisture thus preserved promotes the germination of acorns and subsequently the regeneration of cork oak.

References

HCEFLCD (Haut-Commissariat aux Eaux et Forêts et à la lutte contre la désertification) (2004). Le site web officiel (Maroc) : www.eauxetforets.gov.ma

HCEFLCD (2013). Diaporama. Optimiser la production de biens et services par les écosystèmes boisés méditerranéens dans un contexte de changements globaux. Atelier pour définir et adopter une méthodologie commune pour les analyses de vulnérabilité des sites pilotes du projet FFEM. Composante1.

