EFFECT OF THE POPULATION DENSITY OF THE DATE PALM MITE OF THE ANCIENT WORLD \textit{Oligonychus afrasiaticus} (MCGREGOR) ON SOME DATES PALM TREES IN THE ORCHARDS OF CENTRAL IRAQ

Ahmed M. Tarek
Technical Institute Alsweera, Middle Technical Univ., Ministry of Higher Education and Scientific Research, Baghdad, Iraq

Abstract

The population density of the date palm of \textit{Oligonychus afrasiaticus} (McGregor) was determined on several dates palm trees in the central orchards of Iraq during the 2016 season. Results indicated that the highest egg density of mite stage during the first week of July timing with fruits in Khalal stage and then started to decrease until the end of the generation at the middle of August, while the highest density of nymphs mite stage during last week of July timing with green and yellow of Khalal stage. Species were differ in regard with sensitivity to the mite pest whereas Barhee and Umrani were resistant to the mite, while highly susceptible in Brem and Zahdi species was noted. However, Maktum, Khadrawimandli, and Tabrzal species have a moderate resistance and the highest means of 338, 255, 197, 70, 0, and 0 egg/fruit were recorded in Bream, Zahdi, Maktoom, KhadrawyMandali, Tazzl, Berhi and Amrani respectively during the stage of green Khalal. The highest eggs density were: 338, 255, 197, 70, 0 egg per fruit in Brem, Zahdi, Maktoom, Khadrawimandli, and Tabrzal species respectively, during Al-khalal stage, while the highest density of nymphs were: 746, 452, 447, 309, 108, 0, 0 nymph per fruit respectively during fruits in green and yellow of khalal stage. These results will assist in application of programs management of the mite pest.

Key words: Population density, Mite, \textit{Oligonychus afrasiaticus}, Date palm

Introduction

Date palms attack Phoenix dactylifera many dream types and cause severe damage, the date palm of the ancient world, \textit{Oligonychus afrasiaticus}, is one of the major pests that attack date palm (Negm \textit{et al.}, 2016; Gerson and Applebaum, 2017). The first to study the life of this type of mite is (Hussain, 1966), which showed that the shape of the egg round and color crystal at the first place and then turns into a yellow color waxy at maturity, Larvae are bright green at the beginning of hatching, and have several generations per year and the generation period depends on temperature. The damage of the mite and its danger from nourishing the nymphs on the skin layer of fruit and absorption of juice in the stages before maturity and during which the color of the fruit turns to white gray, which leads to damage to the crop and low quality and marketing value (Carpenter and Elmer, 1978; Ben Chaaban \textit{et al.}, 2011; ALdwsary, 2009). The role of the larvae and the mobile nymphs are the harmful phases of this pest, and members of this type of mite characterized by the secretion of large amounts of tissue covering the fruits, which inhibits the phylogenetic processes of fruits, which cause delay in coloration and maturity of fruits (Al-Jboory, 2007). He showed (Pasquier, 1932) that the fruit is infected with creeping nymphs that are transmitted by the air in the bush, but the main injury occurs by air transport. Date palm varieties vary in degree to \textit{Oligonychus afrasiaticus}, It was found (Hussain, 1974; Ali and Aldosari, 2007) that the varieties of spiky and a variety of resistance to the mite, while Sucary and Rutan were high sensitivity to the injury of this mite either Khuthary variety is the average resistance. Bass’haif (1999) that the mite \textit{Oligonychus afrasiaticus} attacked all varieties of date palm, but different varieties among them in the degree of resistance to him and were Hamra and Hajri least sensitive to this type of mite in the circumstances of WadiHadramout in Yemen, He also studied (Palevsky \textit{et al.}, 2003) the density of the mite \textit{Oligonychus afrasiaticus} on the cultivars of DugllaNour, Al-Burahi and Al-Jadul and found a difference between them and their sensitivity to infection. Previous studies have indicated that the dates of appearance, population density and spread of the mite \textit{Oligonychus afrasiaticus} vary from country to country and from region to region according to temperature and relative humidity and according to palm varieties. When the temperature reaches above 39 Celsius, the mite begins and increases when the humidity is low (Perring \textit{et al.}, 1984b; Pasquier, 1932). Under the conditions of Yemen, the Brehi species is caught between the end of May and the beginning of July (Blumberg, 2008). In Saudi Arabia and Tunisia, \textit{Oligonychus afrasiaticus} reaches its highest population density in mid-July and early August (Ben Chaaban \textit{et al.}, 2012; Bass’haif, 1999; Aldosari, 2009). In Amman, he found that the varieties Halali, Jabri and Khaznani begin to hit in April. The rest of the items will end at the end of the season.
(Elwan, 2000). He cited (Othman et al., 2001; Al-Jboory, 2007) the registration of many natural enemies as biological agents this kind of mite, (ALrubaaai et al., 2015). Several chemical pesticides of natural origin and different action methods were used in its control. The aim of this research is to determine the population density of the mite Oligonychus afrasiaticus and the sensitivity of some date palm varieties to be infected under the conditions of palm groves south of Baghdad.

Material and Methods

The experiments were carried out on trees of date palms: Prim, Zuhdi, Maktoum, Khadraoui Mandali, Tibrzel, Burhi and Omrani in one of the palm groves south of Baghdad during the 2016 season. Three fruit trees were selected from each species and with an average age and trees were identified for each species with colored ribbons. Watchdog 2000 was used to record temperature and humidity in the experimental orchard and air flow data were taken throughout the experiment. The population density of the mite was calculated when the symptoms of the infection were observed at the end of June (6/29) and at the rate of every ten days once and until 8/19. Each time, 15 fruits were randomly collected from each palm tree and from each direction and each palm (single) The number of fruits per class was 45 fruit. The fruits are placed in bags and transferred to the laboratory for the purpose of calculating the numbers of eggs and nymphs for each fruit by washing the fruit with alcohol 70% until the fall of all the mite people and filtering the washing solution using a paper filter and then calculating the preparation of the mite (eggs and nymphs) on the filter paper using a manual meter. The pressure of the thumb and under a simple microscope, The numbers of the mite were calculated on each fruit and each species according to the dates mentioned above. The results were statistically analyzed using the least significant difference of 5% using the statistical program Genstat in the implementation of statistical analysis.

Results and Discussion

The results of the research in Table (1) indicate that Brim and Zuhdi varieties are the most sensitive varieties of the mite Oligonychus afrasiaticus either Berhi and Amrani varieties were the most resistant to the mite, show Maktum, Khadrawimandli, Tibrzel medium resistance, The results in table 1 show that the highest number of eggs was in the first week of July (7/8) and in all the studied varieties: 338.0, 255.2, 197.6, 135.6, 70.6, 0.0, 0.0 eggs /fruit, Brem, Zuhdi, Maktoum, Khadrawy Mandali, Tizzer, Burhi and Omrani, respectively. After that, the population density of the eggs began to decline until it reached zero at the third week of August 8/19. The numerical density of nymphs and adults Table (2) reached their highest density during the third and final week of July (7/28, 7/18) and in all the varieties Table 2 where the average rate was 746.2, 452.8, 447.8, 309.2, 108.0, 0.0, nymphs and adults / fruit respectively Then the numbers went down to zero, except for the Primus, which was 5 nymphs, whole / fruit, during the third week of August 8/19. The results of the statistical analysis indicate significant differences in the population density of the mite among the dates palm cultivars examined. The population density of Oligonychus afrasiaticus may vary according to regions and the difference in climatic conditions of temperature and humidity, as indicated by (Perring et al., 1984b; Pasquier, 1932). We recorded an average temperature and relative humidity of 40.2, 37.8, 40.0, 37.3, 36.9 and 34.7 Celsius during the population density calculation dates of 6/29, 7/8, 7/18, 7/28, 8/9, 8/19 respectively. And relative humidity: 19.5%, 24.5%, 18.5%, 27.3%, 22.5%, 27.0%, respectively. The results of the study agree with the findings of (Ali and Aldosari, 2007; Bass’haif, 1999; Hussain, 1974; Palevsky et al., 2003) that there are differences between date palm varieties in the degree of resistance to the mite Oligonychus afrasiaticus. It was observed in the orchard of the experience that there was a great difference between the species in the degree of the mite where the cultivar Berhi is free of injury Compared with the Brem-sensitive group.

Conclusion

Palm varieties differ among themselves in terms of sensitivity to Oligonychus afrasiaticus. It reaches the highest density of the egg stage during the second week of July according to climatic conditions. Oligonychus afrasiaticus mite reaches the highest population density of the stage of nymphs and adults during the last week of July and according to climatic conditions.
Table 1: The Numerical density of mite palm (Egg stage) *Oligonychus australicus* on the fruits of some varieties of palms groves in central Iraq during the season 2016.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Brem</td>
<td>Total in 45 fruit</td>
<td>In one fruit</td>
<td>Maturation stage</td>
<td>Total in 45 fruit</td>
<td>In one fruit</td>
<td>Maturation stage</td>
</tr>
<tr>
<td></td>
<td>13221</td>
<td>293.0</td>
<td>Green Khalal</td>
<td>15210</td>
<td>338.0</td>
<td>Green Khalal</td>
</tr>
<tr>
<td>雾霾</td>
<td>10377</td>
<td>230.6</td>
<td>Green Khalal</td>
<td>11484</td>
<td>255.2</td>
<td>Green Khalal</td>
</tr>
<tr>
<td>Maktum</td>
<td>6975</td>
<td>155.0</td>
<td>Green Khalal</td>
<td>8892</td>
<td>197.6</td>
<td>Green Khalal</td>
</tr>
<tr>
<td>Khadrawi mandli</td>
<td>4068</td>
<td>90.4</td>
<td>Green Khalal</td>
<td>6102</td>
<td>135.6</td>
<td>Green Khalal</td>
</tr>
<tr>
<td>Tabrzal</td>
<td>2124</td>
<td>47.2</td>
<td>Green Khalal</td>
<td>3177</td>
<td>70.6</td>
<td>Green Khalal</td>
</tr>
<tr>
<td>Barhee</td>
<td>0</td>
<td>0</td>
<td>Green Khalal</td>
<td>0</td>
<td>0</td>
<td>Green Khalal</td>
</tr>
<tr>
<td>Umrani</td>
<td>0</td>
<td>0</td>
<td>Green Khalal</td>
<td>0</td>
<td>0</td>
<td>Green Khalal</td>
</tr>
</tbody>
</table>

LSD 0.05 24.44 36.52 22.43 21.61 19.31 0.0

References


