PHYSIOLOGICAL AND HISTOLOGICAL STUDY OF THE EFFECT OF FINASTERIDE DRUG (PROSTACARE - 5MG) ON THE FERTILITY OF ALBINO MALE RATS

Fahad Najd Obaid and Haider Salih Jaffat
Department of Biology, Faculty of Sciences, University of Kufa, Iraq.

Abstract

Their study was led to explore the impact of finasteride (Prostacare) on testicular capacity in Rattus norvegicus. Forty five matured male rats with body weight of (200-300g) and (8) to (10) weeks of age were divided into (3) groups (15 rats/group). The first group was given orally with distilled water as a control and the others (second and third) were given orally with two concentrations of finasteride (5mg /kg.b.w and 10mg /kg.b.w) daily for a period of (eight weeks). After the finish of the experiment, rats were scarified for the purpose of histological study and measurement of organ weights in the laboratory. The results showed a significant (p<0.05) decrease in the body, testis, epididymis and prostate gland weights in compared with the control. Also, the results of histological examination of testis and epididymis showed a significant (p<0.05) reduce in the seminiferous tubules diameters and reduction in number of the leydig’s cells, while there was a significant (p<0.05) rise in the interstitial space between tubules compared to the control group. The results was showed necrosis in the seminiferous tubules of the testis.

Key words : Finasteride , testis , BPH, necrosis, sexual dysfunction.

Introduction

Finasteride is an inhibitor of human 5α-reductase resulting in the decrease of DHT formation (Sheikh et al., 2015). Finasteride is using for treatment of the male pattern hair loss (MPHL) and benign prostatic hypertrophy (BPH) have demonstrated increased rates of sexual dysfunction including low libido and erectile dysfunction (Michael, 2015).

Any changes in the Testosterone / Dihydrotestosterone ratio in male progeny born from females fertilized by finasteride-treated male rats can result in impairment of testicular physiology and data demonstrate that finasteride cause sperm DNA damage (Kolasa-Wolosiuk et al., 2016). Finasteride was introduced to treat patients with benign prostatic hyperplasia (BPH), and it has shown its effects in reduction of prostate volume and decrease of prostate-specific antigen (Kun, 2004). Finasteride alters sperm morphology in a way that indicates necrosis (Collodel et al., 2007).

Materials and Methods

Preparation of Finasteride (Prostacare) solution

Finasteride (Prostacare - 5mg/kg.b.wt./day), which dose for Human. Matured male albino rats were used for this experimental study. The treated groups with prostacare with two doses (5 mg/kg.b.wt. and 10 mg/kg.b.wt.) were administered orally to male albino rats using separate sterilized oral dosing needle for a period of eight weeks were therapeutic doses calculated for the weight of the rats. The control group received the same volume (distilled water) alone.

Experimental animals

Forty five mature, healthy, fertile and adults albino male rats (Rattus norvegicus) aged (8-10) weeks were obtained from the animal house of College of Veterinary, Al-Qadisiyah University, Iraq. The weight range was 200-300 gm. The animals were housed in plastic caged. The caged were embedded with wooden shelves, under natural (12hr) light and (12hr) dark. The animals were caged at lab temperature of 23 – 25°C and the animals
were feed ad libitum. The animals were reproduced to obtained a propitiate numbers of animals. They were divided into three groups (15 animals D group).

**Laboratory analysis**

Animals weight has been recorded before and after the dosage by using electrical balance. Animals were Sacrifice by cervical dislocation, Immediately after Sacrificed the abdominal cavity was opened in overturned (T) shape and then the male reproductive organs were extirpated (testes, epididymis and prostate gland). The adipose tissues were removed. These reproductive organs were placed on a filter paper to be weighted with an electrical balance.

**Histological study**

Testes, epididymis and prostate gland were kept in Bouin’s solution for 24 hr then they are washed by 70% ethyl alcohol for several times until the yellow colour was removed. Testes were kept in ethyl alcohol 70% of until use. Dehydration, clearing, infiltration, embedding, sectioning, staining and mounting were respectively done to prepare the slides for histological examination according to Bancroft and Stevens (1982).

**Statistical analysis**

The results were expressed as (Mean ± Standard Error). T-test was used for the comparison between control and other groups in the measured parameters. One-way analysis of variance (ANOVA) followed by least significant difference (LSD) analyses at 0.05% probability of levels. All statistical analysis was performed using Excel program and Magastat program The test of significance was placed at p<0.05.

**Results**

The results also showed a significant decrease (p<0.05) in body weight after treatment with concentrations of 5mg /kg.b.wt. and 10mg/kg.b.wt. of the drug compared to control group. There was a significant (p<0.05) decrease in the rate of testes weights, epididymis weights and prostate gland weights of animals treated with Prostacare at two the concentration in compared to control group.

Also the results of seminiferous tubule showed there was a significant (p<0.05) decrease in the diameter of the seminiferous tubule in the treated groups (5mg /kg.b.wt. and 10mg/kg.b.wt.) compared to control group. The results showed there was a significant (p<0.05) decrease in the diameter of the epididymis tubule in the treated groups in compared to control group. Significant (p<0.05) decrease in the diameter of the prostate glands in the treated groups (5mg /kg.b.wt. and 10mg/kg.b.wt.) compared to control group. The histological examination also proved that the treated rats groups (5mg /kg.b.wt. and 10mg/kg.b.wt.) showed a significant (p<0.05) increase in the interstitial space compared to the control groups, also the results was showed necrosis in some seminiferous tubules of the testis of albino male rats that treated with two doses of finasteride.

**Histological of testes, epididymis and prostate gland**

The results in fig. 1 showed normal testis sections of control group, also show decrease in the diameter of seminiferous tubules and increase the interstitial space. In fig. 2 the histological examination of epididymis show decrease in the diameter of tubules. The fig. 3 showed decrease in the diameter of the prostate gland.

**Discussion**

The decrease of the body mass may be recognized to many factors such as the deficiency in the Testosterone levels (Rolf et al., 2002). Testosterone is playing a major role in the growth of male reproductive tissues for example the testes and prostate as well as helping

<table>
<thead>
<tr>
<th>Treatments Groups</th>
<th>Body weight (gm.) (Mean±SEM)</th>
<th>Testes weight (gm.) (Mean±SEM)</th>
<th>Epididymis weight (gm.) (Mean±SEM)</th>
<th>Prostate gland weight (gm.) (Mean±SEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>250.43±9.93</td>
<td>1.4057±0.0433</td>
<td>0.7214 ± 0.0099</td>
<td>0.2243±0.0084</td>
</tr>
<tr>
<td>Prostacare (5 mg/kg.b.wt)</td>
<td>211.86±2.97a</td>
<td>1.1986±0.0192a</td>
<td>0.5686 ± 0.0202a</td>
<td>0.1471 ± 0.0092a</td>
</tr>
<tr>
<td>Prostacare (10mg/kg.b.wt)</td>
<td>194.29±2.04ab</td>
<td>1.0557±0.0157ab</td>
<td>0.4614 ± 0.0147ab</td>
<td>0.1029±0.0042ab</td>
</tr>
<tr>
<td>L.S.D. 0.05</td>
<td>3.33</td>
<td>0.020</td>
<td>0.016</td>
<td>0.006</td>
</tr>
</tbody>
</table>

Date represented (Mean ± SEM)

a = representing a significant (P<0.05) differences in comparison to control. b = representing a significant (P<0.05) differences in comparison to between two treatments (5,10 mg/kg.b.wt.).
secondary sex characteristic such as improved muscle, bone mass and growing of body (Alwachi, 2008).

The impacts of the medication on testicles weight was in consistence with who saw that alpha blockers caused decrease in testicular weight (Mocktary, 2007). This came about because of the huge lessening of spermatogenic cell number as confirm by the examination of stained testicles sections (Giuliano, 2006).

The decrease was recognized to the decline in the level of the T hormone. Some studies have exposed that
the creation and decrease of testicular testosterone leads to decrease of the diameter of epididymis tubule in rats (Nair et al., 2002).

The luminal epithelial cells showed a marked reduction in cytoplasm and their secretory activity became diminished after ûnasteride treatment for 10 days and the lumens of prostate glands that markedly reduced in size and administration of ûnasteride led to additive effects on the thickness of the prostate epithelium ,for this reasons the diameter of prostate gland which reduced (Ma et al, 2004).

The effect of ûnasteride is proportionately similar in both peripheral and transition zones for both volumetric and morphometric changes (Marks et al., 1999).

The reduction in the diameter of seminiferous tubules could be referred to the reduction in testosterone hormone level, since testosterone has an important role in the development and growth of male reproductive ducts and epithelial cells of epidydymal tubules (Umezu et al., 2004).

The reason of degeneration and necrosis changes in seminiferous tubules in rats group treated with ûnasteride may be due to the reduced number of leydig’s cells, which lead to the reduction in level of T hormone which are responsible of active division of spermatogenic cells in spermatogenesis therefore, the reduction in level of T hormone leads to the damage of these cells and then damage in the seminiferous tubules (Guyton and Hall, 2000).

Increase in the spaces between seminiferous tubule resulting from low number in leydig’s cells and this lead to increase diffusion of fluid inside interstitial tissues (Luis et al., 1986).


References


