GENETIC DIVERSITY ASSESSMENT OF SOME STORED INSECT SPECIES IN IRAQ BASED ON RAPD MOLECULAR MARKER

Rasha Abdulrazaq Jwad, Hadi Miza Al Rubaie, Fadhil Abd Alhussain Khalil & Ayad Ismael Khaleel

aDepartment of Plant Protection, Faculty of Agriculture, University of Kufa, Najaf, Iraq.
bDepartment of Microbiology, College of Science WSCI, University of Babylon, Babylon, Iraq.
cDepartment of Horticulture, Faculty of Agriculture, Al Qasim Green University, Babylon, Iraq.
dDepartment of Plant Protection, Faculty of Agriculture, University Putra Malaysia, UPM, Serdang, Selangor Darul Ehsan 43400, Malaysia.

E-mail: rashamohammed2011@gmail.com, ayadr_altaee@yahoo.com, alfadhal58@yahoo.com, engayad78@gmail.com

Abstract

Genotyping of four insect species was carried out using RAPD marker. The genetic variability among the four insect species was estimated using RAPD primers. All primers generated reproducible and easily storable RAPD profiles with some amplified DNA fragments ranging from 9 to 13. The total number of amplicons detected was 56, including unique bands, reached seven. Number of polymorphism was 49 and this represents a level of polymorphism of 87.04% and an average number of 6.8 polymorphic bands per primer. Maximum numbers of amplicons were amplified by primer U-17 reached 13 while the minimum number of fragments was amplified with primers OPE K-02 reached nine. The highest number of polymorphic bands reached 12 were obtained with primer U-17, while the highest number of monomorphic bands reached two was obtained with primer OPE K-02, and M-32 with percentage reached 22.22% and 16.664, respectively. RAPD markers detected genetic similarity and distance, a maximum genetic distance value was observed between T. granarium(1) and C. maculatus(4) and S. oryzae(2) and C. maculatus(4) species reached 0.547 with less similarity value reached 46%, a minimum genetic distance value was 0.435, which observed between S. oryzae (2) and T. castaneum (3) with high similarity value reached 57%. The similarity matrices were employed in the cluster analysis to generate a dendrogram using the UPGMA method. The cluster tree analysis showed that the insect species were broadly divided into two main groups A and B with genetic similarity reached 30%. A group including T. granarium (1) B group was divided into two sub-cluster B1, and B2 with genetic similarity reached 36%. The first sub-cluster (B1) including only C. maculatus (4) while the second sub-cluster (B2) included two species S. oryzae (2) and T. castaneum (3) with the high genetic similarity between them reached 48%.

Key words : Genetic diversity, molecular marker, RAPD, store product insects, plant protection.

Introduction

Stored grain products are one of the largest sources of food in the world (Alonso-Amelot and Avila-Núñez, 2011). The evidence has shown that economic losses caused by insects infested stored grain and insects contamination on food are increasing (Riudavets et al., 2010; Wei, 2012). Recent investigations indicated that insect poses a new risk to global food security (Athanassiou et al., 2009). In this study, the Insectes were selected are Tribolium castaneum (Family: Tenebrionidae), Trogoderma granarium (Family: Dermistidae), Callosobruchus maculatus (Family: Bruchidae) and Sitophilus oryzae (Family: Curculionidae) they are considered as a very serious pest that caused economic loss that reached 20% in crops after harvest and may reach to 80% in some third world countries (Arthur, 2000).

Insects include the largest species composition in the entire anamil Kingdom and have a vast undiscovered genetic and gene pool that can be better explored by using molecular marker techniques. DNA markers are used to provide raw information based on which an ecologist make estimates of genetic diversity and gene flow between species (Behura, 1999). Over the last 15 years, DNA markers had made a significant contribution to the rapid rise of molecular studies of phylogeny, genetic
relatedness and population dynamic (Avise, 2004) and
gene and genome mapping in insects (Severson et al.,
2001; Heckel, 2003). In molecular markers, RAPD-PCR
is a conceptually simple technique for estimation of genetic
diversity of organism (Williams et al., 1990; Welsh and
McClelland, 1990). RAPD markers have become the most
common yardsticks for measuring genetic difference
between individuals, within and between related species
population. This study aimed to evaluate the genetic
distance and similarity between four species of stored
product insects by using five RAPD primers.

Materials and Methods

Insect collection and rearing

Insects were collected from different places in Najaf
city. There are identified morphologically at University Of
Baghdad / Iraq Natural History Museum it was *Tribolium
castaneum*, *Trogoderma granarium*, *Callosobruchus
maculatus* and *Sitophilus oryzae*. They were breeding
in a laboratory of insects, dept. Of plant protection,
agriculture faculty, University of Kufa dry and dark
conditions at 28± 2°C temperature and 60 ± 5% relative
humidity. *T. castanum* bred on wheat flour, while *C.
maculatus* fed on white bean seeds and wheat seeds
were used to breed *T. granarium*, as chick peas were
suitable for (wheevle). Random amplification polymorphous
DNA (RAPD) used as an indicator to measure genetic covariance and genetic distance among insect’s species.

DNA isolation

Total genomic DNA was isolated from adult’s insects’
species using the Kit, leave samples (50 mg) of fine
powder were ground in liquid nitrogen. DNA was
extracted by using Genomic DNA Mini Kit (Geneaid/
UK). 200 µl of DNA extracted was stored at –20°C until
use. Quantity, Concentration and quality of DNA were
determined by Nano drop-spectrophotometrically at 260
nm. The study was accompanied in the research
laboratory of Molecular Genetic at the University of Kufa,
genetic engineering, and biotechnology laboratory.

The RAPD primers (table 1) were obtained from
BIONEER, South Korea. A total of 5 decamer
oligonucleotides of arbitrary sequence were tested for
PCR amplification. AccupPower Gold Multiplex PCR
premix (BIONEER/ South Korea) was used to DNA
amplification with RAPD primers and the thermal cycler
conditions for PCR reactions were an initial denaturation
cycle of 1 min and 30 s at 94°C was followed by 45
cycles comprising 1 min at 94°C, 1 min at 36°C and 2
min at 72°C. An additional cycle of 7 min at 72°C was

<table>
<thead>
<tr>
<th>RAPD Primers</th>
<th>Primers sequences 5’ to 3’</th>
<th>Number of Unique amplified fragments</th>
<th>Number of bands</th>
<th>Percentage(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>OPE-G14</td>
<td>GATGAGACC</td>
<td>11</td>
<td>12</td>
<td>9.09</td>
</tr>
<tr>
<td>OPE A-10</td>
<td>GTGACGAC</td>
<td>11</td>
<td>12</td>
<td>9.09</td>
</tr>
<tr>
<td>OPE K-02</td>
<td>GTCTCCGCAA</td>
<td>9</td>
<td>11</td>
<td>7.69</td>
</tr>
<tr>
<td>U-17</td>
<td>CTGCCAGCAT</td>
<td>13</td>
<td>12</td>
<td>16.66</td>
</tr>
<tr>
<td>M-32</td>
<td>GCCGCTTAAA</td>
<td>12</td>
<td>14</td>
<td>7.69</td>
</tr>
</tbody>
</table>

Table 1: Total number of amplicons, polymorphic, monomorphic amplicons and percentage of monomorphism, polymorphism as revealed by RAPD markers among the 4 insects accessions.
used for final extension.

Electrophoresis of DNA

Amplification products were divided by electrophoresis (100 V) for (30 minutes) in 1.5% agarose gels and stained with ethidium bromide. A photographic record was occupied under UV illumination.

Data analysis

Only repeatable and clear application products were scored as one for present bands and 0 for absent ones. The specific bands suitable for identifying species and cultivar were termed with primer number tracked by size for the approximate of the amplified fragment in pairs base. Amplified products were evaluated by pairwise - comparisons of the genotypes grounded on the percentage of a similarity matrix and common fragments was calculated (Nei and Li, 1979). The 0 or 1 data matrix was created and used to calculate the genetic distance and similarity using ‘Simqual,’ a subprogram of the numerical taxonomy and multivariate analysis system program (NTSYS-PC) program (Stangl et al, 2005). A dendrogram was created based on the genetic space matrix by applying an unweighted pair group technique with arithmetic averages (UPGMA) cluster analysis using the Molecular Evolutionary Genetics Analysis) MEGA version 2.0 (Tamura et al, 2007).

The results in fig. 1 showed of isolated total DNA of the insects of the intentional olive cultivars means filters and then migrated to agar gel 1.5%, voltage 100 V for 30 minutes noting the achievement of the method to isolate DNA from this insect species.
Monomorphisms and polymorphisms detected by RAPD markers

Detecting of high levels of polymorphism is one of the most important features of the RAPD technique, and this feature has been met in the present study (fig. 2).

Five primers were screened with the DNA of the four insect species genotype. All the primers tested was generated reproducible and easily storable. RAPD profiles with some amplified DNA fragments ranging from 9 to 13 (table 1). The total number of fragments produced by five primers was 56 with an average of 11.2 fragments / primers. While the number of polymorphic ranged from 7 to 12 with an average reached 9.8 fragments / primers with the polymorphic percentage reached 87.04%. Although, the number of monomorphic ranged from 1 to 2 and was total of the monomorphic 7 with an average reached 1.4 fragments / primers with the monomorphic percentage was 12.35%. A maximum numbers of amplicons was amplified with primer U-17 reached 13 while the minimum number of fragments was amplified with primers OPE K-02 reached 9. The highest number of polymorphic bands reached 12 was obtained with primer U-17; while the highest number of monomorphic bands reached 2 was obtained with primer OPE K-02 and M-32.

Genetic distance among insect species

Data of RAPD markers scanned from 4 insect species with reproducible primers were used to genetic distance and similarity value co-efficient. A maximum genetic reserve value was observed between (1) and (4), (2) and (4) reached 0.547 with less similarity value reached 45%. While a lowest genetic distance value was observed between (2) and (3) reached 0.435 with high similarity value reached 56% (table 2).

Genetic relationships as revealed by RAPD markers used dendrogram

To determine the genetic relationships among four insect species genotype, the scoring data were used to calculate the similarity matrices. These genetic likeness matrices were then used in the cluster analysis to generate a dendrogram using in the cluster analysis UPGMA analysis. The cluster tree analysis (fig. 3) showed that the insect species were broadly divided into two main...
groups A and B with genetic similarity reached 30%. A group including (1) *T. granarum*. B group was divided into two sub-cluster B1 and B2 with genetic similarity reached 36%. The first sub-cluster (B1) including only *C. maculatus* (4) species and the second sub-cluster (B2) included two species *S. Oryzae* (2) and *T. castaneum* (3) with high genetic similarity reached 48%.

Discussion

RAPD technique took an important place in insect researchers, such as Ecological research that provides invaluable information on population structure, speciation, gene flow and genetic diversity and explanation on insect diversity based on their interaction with environmental factors, either biotic or a biotic, many times, molecular marker data help to distinguish between different species while no other comprehensive way available to do so. In addition, one of the most appealing applications of molecular markers in insect studies is the insect-plant interaction. Using RAPD-PCR with pooled DNA from different strains of Asian rice gall midge, distinct loci specific to individual strains were identified (Behura et al., 2001). Insecticidal resistance is another focus in entomological research that has agricultural importance, molecular markers are used insecticides by using DNA markers, and genetic loci have been mapped in lesser grain borer, *Rhyzopertha dominica* Fabricius. that determines high-level resistance to phosphine (Schlipalius et al., 2002). Also, RAPD markers have been used to generate genetic maps for many insects like beetles (Beeman and Brown, 1999; Riudavets et al., 2010). Genetic Diversity among some insect species, In Florida six population of *Diaprepes abbreviatus* L. was obtained using protein and random amplified polymorphic DNA – polymerase chain reaction (RAPD – PCR) markers, the data showed significant differences among populations (Bas et al., 2000).

References

