AMALAKI (DRIED POWDER OF EMBLICA OFFICINALIS GAERTN) AS FOOD SUPPLEMENT IN DYSLIPIDEMIA - AN ANALYTICAL STUDY

M. B. Kavita*, B. Poornima¹ and K. J. Mallika²

Department of Swasthavritta, S.D.M. College of Ayurveda and Hospital, Hassan (Karnataka State), India.
¹Department of Dravyaguna, S.D.M. Institute of Ayurveda & Hospital, Anchepalya, Kumbalagodu, Bangaluru – 34 (Karnataka), India.
²Department of Samhita and Siddhanta, D.M. College of Ayurveda and Hospital, Hassan (Karnataka State), India.

Abstract

Amalaki (Emblica officinalis Gaertn), the super fruit, is well known for its anti-aging, rejuvenating, hypolipidemic, antioxidant, immunomodulatory, anti-inflammatory pharmacological activities. Also, it is the richest source of vitamin C. The active constituent of Amalaki (Emblica officinalis Gaertn), is Emblicanin which is different from most other antioxidants as it is a pro-oxidation free cascading antioxidant. This study was aimed at standardization of Amalaki choorna (dried powder of Emblica officinalis Gaertn) as food supplement keeping in view of its active constituents responsible for its hypolipidemic action. The powder microscopic study, Thin Layer Chromatography (TLC), High Performance Thin Layer Chromatography (HPTLC), Fingerprinting and Densitogram profiling revealed that the test drug Amalaki choorna was as per the standards mentioned as per the Ayurvedic Pharmacopoeial drugs. The powder microscopy showed all the features of dried fruit of Emblica officinalis. In HPTLC fingerprinting profile, the Rf value 0.41 Light green under 254 nm is as per the standards indicating presence of Gallic acid, which is a product on hydrolysis of Emblicanin A; and of the spot at 0.36 (0.32±5) is nearest value to the standard Rf value corresponds to ascorbic acid. The results obtained suggest that the study drug Amalaki Choorna can be used as food supplement in dyslipidemia.

Key words: Amalaki (Emblica officinalis Gaertn), gallic acid, ascorbic acid, dyslipidemia, TLC, HPTLC.

Introduction

Functional foods and dietary supplements are the two important words commonly witnessed in the branch of nutrition. Ayurveda, an evidence based science, highlights preserving health of healthy and treating the sick. It has a vast description on the concepts and principles of nutrition. It also describes all classes of foods in their raw and processed forms. Amalaki (Emblica officinalis Garten) is among the fruits to be consumed on daily basis (Agnivesa, 2010). It can be consumed any time before, during or after the meal (Sushruta, 1997). It is considered the best anti-aging fruit/drug (Vayasthapaka) for all (Sushruta, 2010). Many animal experiments have proved it as an efficient antidyslipidemic/antihyperlipidemic and antioxidant (Takako et al., 2007; Anila & Vijayalakshmi, 2002; Mishra, Pathak & Khan, 1981).

The major chemical constituents of Amalaki (Emblica officinalis Garten) are ascorbic acid gallic acid chebulonic acid, chebulagic acid, ellagic acid, 3-ethyl gallic acid, corilagin, emblicanin A and B, Punigluconin, quercetin (Neeraj & Madhu, 2010). The fruits of Amalaki (Emblica officinalis Garten) are rich in tannins. The fruits have 28% of the total tannins distributed in the whole plant. The fruit contains two hydrolysable tannins Emblicanin A and B, which have antioxidant properties, one on hydrolysis gives gallic acid, ellagic acid and glucose wherein the other gives ellagic acid and glucose. The fruit also contains Phyllemblin. The active principles are tannins and Gallic acid (Research centre-Natural Remedies, 2009). The antioxidants perform free radical scavenging activity to prevent the oxidative stress leading to dyslipidemia. This study of standardizing Amlaki Choorna (dried fruit powder of Emblica officinalis Garten) was a part of a clinical study “A Study on the Effect of Amalaki as Food Supplement in Dyslipidemia”. This study was an effort to evaluate the constituents responsible for the antidyslipidemic action of Amalaki.

*Author for correspondence : E-mail : mkhsn77@gmail.com, drmkbavita@sdmcawahassan.org
1.1. Epicarp in surface transversely cut view

1.2. Longitudinally cut mesocarp parenchyma

1.3. A fibre and its fragment

1.4. Sclereidal fibre

1.5. Bundle of xylem elements

1.6. Pitted lignified cells of mesocarp

1.7. Pitted mesocarp parenchyma

Fig. 1: Microscopy of Amalaki Choorna.

Fig. 1 continued....
Fig. 1 continued....

1.8. Cortical parenchyma with starch

1.9. Simple starch grain and prismatic crystals

1.10. Fragment of stone cell, fibre and tannin cell

1.11. Sclereidal fibre

1.12. Oil drop lets

1.13. Sclereidal fibres of endocarp

1.14. Mesocarp parenchyma with tannin

1.15. Fragment of sclereidal fibres

Fig. 1 continued....
1.16. Tannin cells and starch

1.17. Fragment of spiral and scalariform vessel

1.18. Starch grains

1.19. Fragment of sclereidal fibre

1.20. Phloem parenchyma

1.21. Sclereidal fibre group

1.22. Sclereid

1.23. Sclereids of the stony endocarp

Fig. 1 continued....
Materials and Methods

Raw drug collection
The fruit of Amalaki (*Emblica officinalis* Garten) was obtained from a local cultivator in Hassan district of Karnataka State in India and authenticated at Department of Dravyaguna, S. D. M. College of Ayurveda and Hospital, Hassan (Karnataka State), India.

Preperation of Amalaki choorna
The mature fruits of Amalaki (*Emblica officinalis* Garten) bought were cleaned and deseeded initially and later dried under sun. Then the dried Amalaki was powdered and preserved in air tight container.

Instrumentation and techniques
Powder microscopic study and High Performance Thin Layer Chromatography (HPTLC) studies were done at SDM Centre for Research in Ayurveda and Allied Sciences, Kuthpady, Udupi, Karnataka, India as per standard procedure. Following techniques and methods were adopted for the study:

Powder microscopy : Minimum quantity of powder
was mounted in a microscopic slide, cleared with chloral hydrate, characters were observed under trinocular microscope (Zeiss AXIO).

Extraction : One gram of powder was dissolved in 5 ml of water and extracted with 10 ml of n-butanol. The soluble portion was evaporated to dryness and the residue was dissolved in 5 ml of alcohol.

HPTLC : 15 and 30 µl of the above extract was applied on a precoated silica gel F254 on aluminum plates to a band width of 8 mm using Linomat 5 TLC applicator. The plate was developed in Toluene: Ethyl acetate: Formic acid (1 : 0.7 : 0.1). The developed plates were visualized and scanned under UV 254, 366 and after derivatisation in vanillin-sulphuric acid spray reagent at 620 nm. R_f, colour of the spots and densitometric scan were recorded.

Results and Discussion

On microscopic examination, Amalaki choorna (dried fruit powder of *Emblica officinalis* Garten) showed the
presence of characters such as epicarp of fruit in surface and in transversely cut view; longitudinally cut thick-walled mesocarp parenchyma; thick-walled fibres and its fragments, often sclereidal in nature; bundle of xylem elements formed by spiral and scalariform vessel; pitted lignified parenchyma cells of mesocarp, often with starch grains and tannin; highly pitted sclereidal fibres of endocarp which are often fragmented; fragment of thin walled phloem parenchyma; thick walled sclereids of the stony endocarp; different types of stone cells and plenty of brown uniformly sized oil drop lets, simple starch grains and tannin cells scattered throughout the powder (fig. 1).

The characteristic features showed in standard Emblica officinalis powder are epidermal cells in surface view (fig. 1.1), parenchyma from mesocarp (fig. 1.2), isolated sclereids (fig. 1.22), prismatic crystals (fig. 1.9), pitted vessel attached with parenchyma (fig. 1.6), pitted parenchyma (fig. 1.7), starch grains (fig. 1.18), group of stone cells (fig. 1.24), sclereids from the endocarp (fig. 1.23) and fibres (fig. 1.3) match with the study powder (Neeraj and Madhu, 2010). Tanins, important constituents present in powder microscopic study are known for their antioxidant activity and are responsible for the protection and preservation of the ascorbic acid on drying under sun (Ekta et al., 2011).

TLC and HPTLC

TLC fingerprint profile is a systematic representation of all the constitution of samples resolved in the given chromatographic system. TLC photo documentation of extract of Amalaki Choorna (dried fruit powder of Emblica officinalis Garten) is presented in fig. 2.

HPTLC fingerprint profile of Amalaki choorna (dried fruit powder of Emblica officinalis Garten) was developed. The purity of the bands in the sample extract was confirmed by comparing the absorption spectra.
recorded at the start, middle and end position of the band. The HPTLC densitometric scans at UV 254, 366 and after derivatisation are presented in the figs 3, 4 and 5 respectively. The observed Rf values are tabulated in table 1.

The Rf values of the spot and their colour by TLC photodocumentation of Amalaki choorna (dried fruit powder of Emblica officinalis Garten) extract was developed. n-butanol extract of Amalaki Choorna (dried fruit powder of Emblica officinalis Garten) at 254 nm showed six spots (0.08 Green, 0.21 Green, 0.36 Dark green, 0.41 Light green, 0.60 Light green, 0.70 Light green), where as under 366 nm, it showed five spots (0.21 F.White, 0.36 F.Blue, 0.49 F.Blue, 0.81 F. Green, 0.93 F.Blue); after derivatisation in vanillin-sulphuric acid spray reagent at 620 nm, it showed five spots (0.21 Red, 0.36 Red, 0.41Orange, 0.60 Blue, 0.70 Blue).

The Rf of the spot at 0.41 Light green under 254 nm is as per the standards (Neeraj and Madhu, 2010), which indicates presence of gallic acid, a product on hydrolysis of Emblicanin A. The presence of gallic acid here, indicates that the Amalaki choorna (dried fruit powder of Emblica officinalis Garten) under study contains Emblicanin A which helps prevent oxidative stress leading to dyslipidemia (bhattacharya a, Ghosal and Bhattacharya, 2000).

The Rf of the spot at 0.36 (0.32±5) is nearest value to the standard Rf value corresponding to ascorbic acid (Government of India, 2009). Ascorbic acid (Vitamin C) is a dietary antioxidant, helping in reduction of oxidative stress (Jain et al., 2013).

Table 1: Rf values of Amaalaki Choorna (30µl).

<table>
<thead>
<tr>
<th>UV 254 nm</th>
<th>UV 366 nm</th>
<th>After derivatisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.08 Green</td>
<td>0.21 F.White</td>
<td>0.21 Red</td>
</tr>
<tr>
<td>0.21 Green</td>
<td>0.36 F.Blue</td>
<td>0.36 Red</td>
</tr>
<tr>
<td>0.36 Dark green</td>
<td>0.49 F.Blue</td>
<td>0.41Orange</td>
</tr>
<tr>
<td>0.41Light green</td>
<td>0.81 F.Green</td>
<td>0.60 Blue</td>
</tr>
<tr>
<td>0.60 Light green</td>
<td>0.93 F.Blue</td>
<td>0.70 Blue</td>
</tr>
<tr>
<td>0.70 Light green</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Fig. 5: HPTLC Densitometric scan of Amalaki Choorna at 620 nm after derivatisation with vanillin sulphuric acid.
Conclusion

Amalaki choorna has shown all the characters of standard dried *Emblica officinalis* fruit. Alcohol extract of amalaki choorna under 254 nm, 366 nm, showed 6 spots and 5 spots, respectively. After derivatization with vanillin sulphuric acid it showed 5 spots. The densitometric scan of amalaki choorna at 254 nm showed 10 peaks; at 366 nm, showed 12 peaks and at 620 nm the densitometric scan showed 8 peaks. The presence of tannins, ascorbic acid and gallic acid (amblicanin) indicates it can act against oxidative stress leading to dyslipidemia and atherosclerosis.

Acknowledgement

We thank the SDM Centre for Research in Ayurveda and Allied Sciences, Kuthpady, Udupi, Karnataka, India for their timely support and providing concession on cost of research.

References

