CORROSION INHIBITION OF CARBON STEEL IN SODIUM CHLORIDE SOLUTION USING ARTEMISIA PLANT EXTRACT

Ishraq K. Ibrahim and Juman A. Naser*

Department of Chemistry, College of Education for Pure Science- Ibn Al-Haitham, University of Baghdad, Baghdad, Iraq.

Abstract

The mechanism of corrosion inhibition of Artemisia extract as eco-friendly inhibitor at concentrations (2, 4, 6, 8, 10) mL/L on carbon steel in 0.6 M NaCl solution at different temperatures (303, 313, 323, 333) K investigated by the weight loss measurements. Infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and energy dispersive x-ray spectroscopy (EDS) techniques have been done to the surface of carbon steel in an absence and present the extract to investigate the formation of an adsorbed layer. The results confirmed that the inhibition efficiency increases as the concentration of extract increase, while it decreases with an increase in the temperature. So, the maximum value of inhibition efficiency was (87.5%) for the maximum concentration of inhibitor.

Key words: Inhibition, Corrosion, Carbon Steel, Artemisia extract, Physisorption.

Introduction

Carbon steel is widely used in industrial and municipal applications such as tanks, pipes, water facilities and heat exchangers. It is exposed corrosion in potable and salty water, especially in presence of the aggressive chloride ion (Revie et al., 2008; Valcarce et al., and Vazquez, 2010; Branzoi et al., 2014; Meresht et al., 2011). The use of corrosion inhibitors in the system of closed metal cooling is the most economically effective method (McCafferty, 2010; Hong et al., 2017). The most common inhibitors are organic compounds containing heterogeneous atoms such as oxygen, nitrogen, sulfur, and phosphorous, which adsorb on the surface of metal (Markhali et al., 2013; Obot et al., 2013). The adsorption process occurs through the interaction of the free double electrons of the inhibitor molecules with the empty orbitals in the surface of metal, which creates a protective layer (Noor et al., 2008; Obi-Egbedi et al., 2011). In recent years, the use of organic compounds as an inhibitors has been limited due to their high cost, toxicity and environmental hazard (Ramde et al., 2014; Fiori-Bimbi et al., 2015). Thus, the plant extracts were used as green inhibitors of corrosion due to their contain several compounds such as polyphenols, alkaloids, flavonoids, glycosides, and tannins which have beneficial effects on many diseases such as malaria, hepatitis, antioxidant, anti inflammatory, antibacterial and antifungal agents (Sharifi-Rad et al., 2017; Nigam et al., 2019; Abad et al., 2012; Msaada et al., 2015). Weight loss method, infrared spectroscopy (FTIR) and energy dispersion spectroscopy (EDS) were

*Author for correspondence : E-mail : juman_chem@yahoo.com
used to evaluate the effect of artemisia extract inhibition. Hence, the surface of metal was examined in an absence and presence of the inhibitor using the electronic scanning microscope (SEM).

Materials and Methods

Preparation of samples

Carbon steel samples were used in the current study are composed of the following composition given in Table 1. The used samples in weight loss measurements have been cut into 3cm x 1.5cm x 2mm pieces. The metal surface of carbon steel samples were smoothed by different grades of SiC paper and washed by distilled water, then dried with a cloth.

Preparation of corrosive solution

To conduct the study of corrosion, saline solution of 0.6 M NaCl was prepared by dissolve sodium chloride crystals in distilled water.

Preparation of inhibitor

Artemisia plant powder was washed with distilled water to remove the soil and dust residue and then 10 g was extracted by boiling water for 3 h. The water was evaporated from the extracted plant to obtain a concentrated solution 200 mL after the filtration. The plant extract has been used to investigate the inhibition of carbon steel in various concentrations (2, 4, 6, 8 and 10) mL L\(^{-1}\) at different temperatures (303, 313, 323 and 333) K.

Experiments of corrosion

The study of presence of an inhibitor concentrations from Artemisia plant extract on the corrosion of carbon steel in 0.6 M NaCl medium was investigated by weight loss method at range of the temperatures after 3 h of the immersion period for all concentrations. The values of inhibition efficiency IE% and corrosion rate CR were calculated. The samples of carbon steel have been weighed after the immersion in 50 mL of the corrosive medium in an absence and presence of different concentrations of the inhibitor. The samples were cleaned using distilled water and dried with a cloth, then weighed by balance Sartorius Lab-210S (Germany).

The corrosion rates CR were estimated from the relationship as given (Obot et al., 2013):

$$CR = \frac{\Delta W}{A \times t}$$

where \(\Delta W\) is the weight loss (g), \(A\) is the total area of carbon steel sample (m\(^2\)) and \(t\) is the time of immersion (day).

The inhibition efficiency was estimated by utilizing the following relationship:

$$IE\% = \frac{CR_{uninh} - CR_{inh}}{CR_{uninh}} \times 100$$

where \(CR_{uninh}\) and \(CR_{inh}\) are the rates of corrosion for samples of carbon steel in an absence and presence of the inhibitor, respectively.

FTIR analysis

The components of inhibitor which adsorbed on the carbon steel surface can be characterized by FTIR technique. The infrared spectrum of the extract and scratched sample was performed by mixing them with potassium bromide to prepare a pallets. FTIR spectrums were performed by FTIR spectrometer SIDCO-600 (England).

SEM analysis

The carbon steel morphology were tested by scanning electron microscopy (SEM). The micrographs of SEM were taken to observe the protective layer of inhibitor and to determine the differences in the morphology of sample surface in an absence and presence of the inhibitor with the saline corrosive solution.

EDS analysis

EDS spectrums confirmed the presence of percentages of chlorine, sodium and oxygen on the carbon steel surface. The samples were immersed in 50 mL of 0.6 M NaCl for 3 h in an absence and presence of the maximum concentration of inhibitor with the corrosive solution. SEM and EDS analysis was done using a scanning electron microscope Tescan- Mira3 (France).

Results and discussion

FT-IR analysis

A spectroscopic study with FTIR technique was done to find the functional groups of molecules which present in the extract and their stability in 0.6 M sodium chloride solution. The spectrum of Artemisia extract is shown in Fig. 1a. A broad band is observed at 3435 cm\(^{-1}\) attributed to the stretching vibration of hydroxyl O–H or amine N–H groups. Whereas, a clear absorption peak at 1631 cm\(^{-1}\) due to the stretching vibration of carbonyl group (C=O) (Kemp, 2009). Thus, it is clear that the extracted organic compounds are remain stable in 0.6 M NaCl.

Fig. 1b shows FT-IR spectrum of the adsorbed layer which protecting the surface of carbon

<table>
<thead>
<tr>
<th>C %</th>
<th>Mo%</th>
<th>Si %</th>
<th>Mn%</th>
<th>P %</th>
<th>S %</th>
<th>Cr %</th>
<th>Al%</th>
<th>Cu%</th>
<th>Ni%</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.128</td>
<td>0.002</td>
<td>0.0289</td>
<td>0.437</td>
<td>0.0052</td>
<td>0.0024</td>
<td>0.0028</td>
<td>0.0383</td>
<td>0.0113</td>
<td>0.0148</td>
</tr>
</tbody>
</table>
Steel after immersed in NaCl in presence of Artemisia extract.

When comparing Fig. 1a and 2b, it is noted that the significant peaks of the molecules of inhibitor which are present in the adsorbed layer on the surface of carbon steel. While a shifting of these values was observed in the immersed Fig 1b. The broad band of hydroxyl O–H and amine N–H groups are shifted to 3437 cm$^{-1}$, while peak of carbonyl group is shifted to 1620 cm$^{-1}$. So, the peaks at 1109 cm$^{-1}$ shifted to 1122 cm$^{-1}$. All these changes in the characteristic peaks indicate that the inhibitor molecules are adsorbed on the metal surface in 0.6 M NaCl medium.

SEM analysis

The SEM micrographs of the surface of carbon steel were taken before and after the immersion in 0.6 M NaCl in an absence and presence of Artemisia extract are shown in Fig. 2. Thus, Fig. 2a shows the polished surface of carbon steel before immersion in saline solution and Fig. 2b shows the immersed surface of carbon steel in 0.6 M NaCl solution in an absence of the inhibitor. It is clear that the surface of metal heavily corroded. However, Fig. 2c shows the immersed surface of carbon steel in 0.6 M NaCl medium in presence of the inhibitor. As the presence of the inhibitor in the corrosive solution led to a decrease in the corrosion rate and gave a smooth form to the surface of carbon steel through the formation a protective layer (Morad and El-Dean, 2006).

EDS analysis

EDS analysis was performed to determine the weight percentage of elements that present in low carbon steel in 0.6 M NaCl solution in an absence and presence of the inhibitor, Fig. 3a. It was observed from the EDS analysis of carbon steel immersed in the aggressive solution of 0.6 M NaCl that the oxygen concentration was high 18.2%, Fig. 3b and Table 2, due to the oxidation of the alloy surface. In the presence of inhibitor, a decrease in the concentration of chlorine was observed in presence of the inhibitor, which confirms the formation

<table>
<thead>
<tr>
<th>NaCl medium</th>
<th>C</th>
<th>O</th>
<th>Na</th>
<th>Si</th>
<th>Cl</th>
<th>Mn</th>
<th>Fe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Un inhibitor</td>
<td>6.35</td>
<td>26.71</td>
<td>0.69</td>
<td>0.14</td>
<td>0.95</td>
<td>0.11</td>
<td>65.05</td>
</tr>
<tr>
<td>Inhibitor</td>
<td>6.43</td>
<td>18.20</td>
<td>0.91</td>
<td>0.18</td>
<td>0.62</td>
<td>0.23</td>
<td>73.42</td>
</tr>
</tbody>
</table>

Fig. 1: FTIR spectrum of a; the Artemisia extract and b; the scratched layer of the carbon steel sample immersed in 0.6 M NaCl.

Fig. 2: SEM micrograph of carbon steel surface a; before the immersion, b; after the immersion in 0.6 M NaCl solution and c; in presence of the inhibitor.

Table 2: EDS element ratios of carbon steel surface immersed in 0.6 M NaCl solution in an absence and presence of the inhibitor.
of a protective layer from the inhibitor molecules on the alloy surface (Ostovari et al., 2009). While an increase in the oxygen concentration is attributed to the donor oxygen atoms which present in the inhibitor molecules.

Measurements of weight loss

Effect of concentration and temperature

The measurements of weight loss applied to investigate the inhibitive properties of Artemisia extract on the corrosion of carbon steel in 0.6 M NaCl solution in an absence and presence of various concentrations of the extract at different temperatures (303–333) K. It is clear from the results that the inhibition efficiency IE% increased as the concentration of the extract increased, while it decreased with an increase in the temperature that confirms a physisorption mechanism (Kamal and Sethuraman, 2013). This refers to increasing in the adsorbed molecules of extract on the carbon steel surface as a result to increasing extract concentration. The maximum efficiency of inhibition was 87.5% by Artemisia extract at concentration 10 mL/L and 303 K. Fig. 4 shows the corrosion rate values against concentrations for the corrosion of carbon steel in 0.6 M NaCl in presence of various concentrations of the extract and at different temperatures. Thus, the weight loss of carbon steel increased with increasing temperature reflecting the desorption process of the adsorbed extract molecules from the carbon steel surface at high temperatures. Fig. 5 shows the inhibition efficiency values versus concentrations for the corrosion of carbon steel in 0.6 M NaCl at different temperatures in presence of the various inhibitor concentrations. The inhibition efficiency increases as the concentration of the extract increase and it decreases with an increase in the temperatures.

Conclusions

FTIR, SEM and EDS techniques was performed to the immersed carbon steel in 0.6 M NaCl in an absence and present the extract of Artemisia plant to investigate the formation of an adsorbed layer on the surface of metal. The inhibition efficiency increases as the concentration of the extract increase and it decreases with an increase in the temperatures range (303-333) K. In addition the maximum value of inhibition efficiency was (87.5%) for a concentration 10 mL/L of the extract of Artemisia plant.

References

Haddadi, S.A., E. Alibakhshi, G. Bahlakeh, B. Ramezanzadeh and M. Mahdavian (2019). A detailed atomic level computational and electrochemical exploration of the *Juglans regia* green fruit shell extract as a sustainable and highly efficient green corrosion inhibitor for mild steel in 3.5 wt% NaCl solution. *Journal of Molecular Liquids, 284*: 682-699.

