ORGANIC NUTRIENT MANAGEMENT IN TOMATO –DOLICHOS BEAN – BABY CORN CROPPING SEQUENCE

Mullaimaran S.1*, Haripriya K.1, Umamaheswari T.1 and Jaiganesh V.2

Depart. of Horticulture, Faculty Of Agriculture, Annamalai University, Annamalai Nagar-608002 Tamilnadu, India.
Depart. of Plant Pathology, Faculty Of Agriculture, Annamalai University, Annamalai Nagar-608002 (T.N.) India.

Abstract

Field experiment was conducted at farmers field Sendarappatti village in Salem district during the year 2009-2010 to 2010-2011 to evaluated the performance of different organic farming packages for high value cropping system, viz., Tomato –Dolichos bean- Baby corn. The experiment was laid out in randomized block design with three replications. The result revealed that the in organics resulted higher net returns and B:C ratio due to the less cost involved in nutrient application compared with different organic farming packages, among the different organic farming packages, 75 % N as Vermicompost (10.03 t ha⁻¹) + 25 % N as Neem cake (0.73 t ha⁻¹) register higher net returns with B:C ratio (3.98).

Key words : Tomato-Dolichos bean- Baby corn cropping sequence, organic manures, equivalent yield and Benefit Cost Ratio.

Introduction

Organic farming is a sustainable system that avoids the use of synthetic fertilizers, pesticides and raise s the crop with the use organic cultivation practices. It is one among the board spectrum of production method that are supportive of the environment. Use of high analysis chemicals fertilizers in imbalance and discriminated manner has developed many problems like decline of soil organic matter, increase in salinity and sodicity deterioration in the quality of crop produce, increase in hazardous pests and diseases and increase in soil in pollutants (Singh, 2004) continuous use of inorganic fertilizers not only brought about loss of vital soil fauna and flora but also resulted in loss of secondary and micronutrients. In view of these facts supply of all the plant nutrients has been advocated through organic sources only (Treadwell, 2009) there is very little research work on total use of organic sources particularly for high value crops and experiences in the past have shown that it is impossible to attain sustainable agriculture production through the use of inorganic fertilizers production. Hence, the present study was conducted to evaluated the different organic farming packages for high value cropping sequences to obtain higher productivity.

Materials and Methods

Field experiment was conducted at farmers field Sendarappatti village, Salem district and the experiment was laid out in randomized block with three replication. Tomato, Dolichos bean and Baby corn were raised in kharif, rabi and summer season during the year 2009-2010 in sequence. The soil of the experimental field site is sandy loam in texture the soil Ph is alkaline and has low to medium soluble salt content and low in available nitrogen low to medium in available phosphorus and medium to high in available potassium the mean annual rain fall is 657 mm distributed over 47 rainy days. The mean maximum and minimum temperatures are 31.5 and 21.4 respectively the treatment combination were

T₁ - Control
T₂ - Inorganic fertilizers (150:100:50 NPK kg ha⁻¹)
T₃ - 25% N as Farm Yard Manure (3.50 t ha⁻¹) +75% N as Neem cake (2.18 t ha⁻¹)
T₄ - 75% N as Farm Yard Manure FYM (10.50 t ha⁻¹) +25% N as Neem cake (0.73 t ha⁻¹)
T₅ - 25% N as Farm Yard Manure (3.50 t ha⁻¹) +75% N as Castor cake (2.00 t ha⁻¹)
T₆ - 75% N as Farm Yard Manure (10.5 t ha⁻¹) +25% N as Castor cake (0.65 t ha⁻¹)

*Author for correspondence : E-mail: mullaihorti@gmail.com
T₇ - 25% N as Vermicompost (3.34 t ha⁻¹) + 75% N as Neem cake (2.18 t ha⁻¹)

T₈ - 75% N as Vermicompost (10.03 t ha⁻¹) + 25% N as Neem cake (0.73 t ha⁻¹)

T₉ - 25% N as Vermicompost (3.34 t ha⁻¹) + 75% N as Castor cake (2.00 t ha⁻¹)

T₁₀ - 75% N as Vermicompost (10.03 t ha⁻¹) + 25% N as Castor cake (0.65 t ha⁻¹)

T₁₁ - 25% N as Poultry manure (0.72 t ha⁻¹) + 75% N as Neem cake (2.18 t ha⁻¹)

T₁₂ - 75% N as Poultry manure (2.16 t ha⁻¹) + 25% N as Neem cake (0.73 t ha⁻¹)

T₁₃ - 25% N as Poultry manure (0.72 t ha⁻¹) + 75% N as Castor cake (2.00 t ha⁻¹)

T₁₄ - 75% N as Poultry manure (2.16 t ha⁻¹) + 25% N as Castor cake (0.65 t ha⁻¹)

Results and Discussion

Pooled analysis of the showed that application of Inorganic fertilizers (150:100:50 NPK kg ha⁻¹) recorded higher yield in the Tomato (37910 kg ha⁻¹), Dolichos bean (6460 kg ha⁻¹) and Babycorn (14980 kg ha⁻¹) compared with the only organic management practices. Among the various organic practices application of 75% N as Vermicompost (10.03 t ha⁻¹) + 25% N as Neem cake (0.73 t ha⁻¹) recorded significantly higher fruit, pod and cob yield (30270 kg ha⁻¹, 5500 kg ha⁻¹ and 13710 kg ha⁻¹) which was followed by the application 75% N as Poultry manure (2.16 t ha⁻¹) + 25% N as Neem cake (0.73 t ha⁻¹). Though the identified yield characters like number of fruits, pods and cobs per plant, weight of the fruits, pods and cobs per plant, number of seeds per fruit and pods and biomass production are controlled genetically, they are greatly influenced by the availability of nutrients to the crop. In the present study, the yield attributes and dry fruit yield were maximum in the inorganic fertilizer treatment. This is in accordance with Chanda et al. (2011) in tomato. Regarding the yield parameters and dry fruit yield, appreciable variation was recorded. Among the organic manures and oil cakes tried, vermicompost @ 10.50 t ha⁻¹ and neem cake @ 0.73 t ha⁻¹ registered the maximum yield and yield attributing characters. This might be due to the higher nutrient uptake from vermicompost when compared to other treatments. The superiority of vermicompost over poultry manure might be due to higher P fertilization by symbiotic mycorrhizal association as reported by Kale et al. (1987), presence of N fixers (Loquet et al., 1997), growth substances (Gavrilov, 1962) and other essential nutrients (Bano et al., 1987). Similarly, Bagyaraj and Powell (1985) revealed that N uptake in plants grown with vermicompost was significantly more than that with poultry manure due to higher availability of N in the vermicompost which was attributed to the higher activity of nitrogen fixers. Similarly, uptake of P was also more with vermicompost treated plants due to the symbiotic mycorrhizal association with vermicompost. According to Kale et al. (1987), vermicompost acts as a good medium for growth and development of microbes in the soil and made the nutrients available for the uptake by plants. The higher nutrient uptake of the plants treated with vermicompost might be the reason for the better exhibit of yield attributing characters and yield. While N promoted the vegetative growth, P probably influenced root growth in a positive manner which could have helped better absorption and transformation of nutrients from source to sink capacity of plants. Better root growth would have helped to divert photo assimilates to more economic yield. Higher uptake of nutrients would have helped to produce more vegetative growth and more number of flowers per plant. By this way, the effective conversion of carbohydrate (reserved material) to productive (economic) part might have increased the yield attributing characters and yield as reported by Singh and Maurya (1992). As reported by Vadiraj et al., (1998) improved nitrogen metabolism particularly an increase in nitrate reductase activity has been proposed as a predictive test for crop yield. Here there is a relationship between nitrate reductase activity and protein synthesis. Earthworm casts are known to increase protein synthesis in plants which have definite influence in plant growth and yield. Furthermore, vermicompost is not only supplying the nutrients, but also supplies the enzymes, vitamins and growth hormones like IAA which are highly responsible for the prevention of flowers and fruit drop along with higher fruit set percentage as reported by Atiyeh et al., (2002). Better availability of photosynthates and increased levels of various endogenous hormones in plant tissue due to the application of vermicompost could have been responsible for enhanced pollen germination and tube growth resulting in increased fruit set as opined by Nanthakumar and Veeraragavathatham (1999). According to Singh and Chanda et al., (2011) vermicompost is capable of supplying growth hormones, enzymes and minerals which are very much helpful for the fruit and seed development. Higher and ready availability of nutrients at the right time might be the reason for higher nutrient uptake and simultaneously increased the yield and yield attributing characters in the plots where neem cake was incorporated along with vermicompost. This is in accordance with Supradipshaha et al., (2007) in baby corn. Regarding the yield and yield attributes, the next best result was achieved
Table 1: Effect of organic amendments on yield and economic benefits of Tomato-Dolichos Bean-Baby Corn Cropping Sequence.

<table>
<thead>
<tr>
<th>Treatments</th>
<th>Yield (kg/ha)</th>
<th>TEY*(kg/ha)</th>
<th>Net return</th>
<th>B:CRatio</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Tomato</td>
<td>Dolichos Bean</td>
<td>Baby Corn</td>
<td></td>
</tr>
<tr>
<td>T_1</td>
<td>9330</td>
<td>2720</td>
<td>2250</td>
<td>16550</td>
</tr>
<tr>
<td>T_2</td>
<td>37910</td>
<td>6460</td>
<td>14980</td>
<td>74330</td>
</tr>
<tr>
<td>T_3</td>
<td>12360</td>
<td>3630</td>
<td>4300</td>
<td>24590</td>
</tr>
<tr>
<td>T_4</td>
<td>10070</td>
<td>3640</td>
<td>5000</td>
<td>20710</td>
</tr>
<tr>
<td>T_5</td>
<td>11510</td>
<td>3010</td>
<td>2700</td>
<td>19920</td>
</tr>
<tr>
<td>T_6</td>
<td>10530</td>
<td>3210</td>
<td>3700</td>
<td>13740</td>
</tr>
<tr>
<td>T_7</td>
<td>25660</td>
<td>5260</td>
<td>11010</td>
<td>52940</td>
</tr>
<tr>
<td>T_8</td>
<td>30270</td>
<td>5500</td>
<td>13710</td>
<td>68512</td>
</tr>
<tr>
<td>T_9</td>
<td>18590</td>
<td>4430</td>
<td>8310</td>
<td>39640</td>
</tr>
<tr>
<td>T_10</td>
<td>20360</td>
<td>5080</td>
<td>9500</td>
<td>44440</td>
</tr>
<tr>
<td>T_11</td>
<td>23750</td>
<td>5100</td>
<td>10010</td>
<td>48870</td>
</tr>
<tr>
<td>T_12</td>
<td>28930</td>
<td>5350</td>
<td>12130</td>
<td>58540</td>
</tr>
<tr>
<td>T_13</td>
<td>14500</td>
<td>4320</td>
<td>6090</td>
<td>31000</td>
</tr>
<tr>
<td>T_14</td>
<td>16320</td>
<td>4130</td>
<td>7230</td>
<td>34910</td>
</tr>
<tr>
<td>S. ED</td>
<td>0.512</td>
<td>0.02</td>
<td>0.33</td>
<td>0.44</td>
</tr>
<tr>
<td>CD (P=0.05)</td>
<td>1.040</td>
<td>0.05</td>
<td>0.66</td>
<td>0.88</td>
</tr>
</tbody>
</table>

*Tomato Equivalent Yield. TEY= Tomato per kg price/Other crop per kg price * Other crop yield.

by the combination of poultry manure @ 2.16 t ha⁻¹ and neem cake @ 0.73 t ha⁻¹. The residual effects of manures viz poultry droppings, farm yard manure, neem cake, vermicompost and castor cake was favorable and resulted in better growth of succeeding crops. This has ensured sustainable crop production in same field.

Conclusion

Organic farming can be taken up for high value crops like tomato, Dolichos bean and baby corn on-farming generation of organic sources and possibility of getting high premium price for organically grown crops will commensurate the net returns in addition to maintain the soil ecological equilibrium.

References

